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CHAPTER 1

INTRODUCTION

1.1 Motivation

Planetary gears are widely used in the transmissions of helicopters, automobiles,

aircraft engines, heavy machinery and marine vehicles. Figure 1.1 illustrates a single-

stage planetary gearset consisting of a sun gear, a ring gear, several planets, and a carrier.

Any of the carrier, ring, and sun can be selected as the input or output component, and the

power is transmitted through multiple paths of the planet meshes. Planetary gears have

substantial advantages over parallel shaft drives, including compactness, large torque-to-

weight ratio, diminished loads on shafts bearings, and reduced noise and vibration due to

the relatively smaller and stiffer components.

Despite planetary gears' advantages, noise and vibration remain major concerns in

their applications. In most helicopters, planetary gears are used in the last stage of gear

reduction. This planetary gear is mounted directly to the helicopter cabin, so its vibration

is the main source of structure-borne cabin noise, which can exceed 100 dB (Krantz,

1993). Measurement of the cabin noise shows that gear mesh frequency and its harmonics

are the dominant acoustic frequencies (Figure 1.2). Extensive cabin noise results in
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Figure1.1Planetarygeardiagram(Lynwander,1983)
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Figure 1.2 Helicopter cabin noise spectra (Heath and Bossier, 1993)
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operator fatigue, communication difficulty and health risk from extended exposure.

Mitigating the cabin noise becomes a crucial requirement for effective operation of

military and civilian helicopters. In vehicle automatic transmissions, planetary gear

vibration can be transferred through bearings and mounts to the passenger compartment

and results in discrete high frequency pitches in automotive interior noise. Consumers

often perceive the gear noise as poor quality and mechanical problems. Vibration

reduction in planetary gears provides substantial benefits: reduced noise, improved

reliability, more efficient power transfer, and reduced maintenance costs. However, the

noise and vibration issues in current planetary gear design rely mostly on empirical

experience and cut-and-try methods, rather than engineering understanding. General

design guidelines are needed to minimize planetary gear vibration.

Vibration reduction of planetary gears requires thorough examination of the

structural dynamics. A detailed review of planetary gear dynamic analyses before 1980s

is found in August (1983). These analyses on planetary gear dynamics include modeling

and free vibration investigations (Cunliffe et al., 1974; Botman, 1976; Frater et al., 1983;

Velex and Flamand, 1996), neutralization of transmission error excitation (Seager, 1975),

dynamic tooth load due to run-out errors (Hidaka, 1979e; 1980), mesh stiffness variation

(Kasuba and August, 1984), load sharing among planets (Ma and Botman, 1984), and

torsional vibration and dynamic loads (August and Kasuba, 1986). More analytical

studies were performed after 1990s. Kahraman derived a nonlinear, time-varying planar

model (1994a) and subsequently extended it to three-dimensions and examined the

influence of planet phasing on dynamic response (1994b). Using a three-dimensional
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model for helical gears, Kahraman and Blankenship (1994) investigated the load sharing

and mesh phasing among planets. Kahraman (1994c) also reduced his model to a purely

torsional one to predict natural frequencies and vibration modes. More recently, Agashe

(1998) and Parker et al. (2000a) used a finite element tool to investigate the dynamic

response and planet phasing issues in planetary gears. This special computational tool

naturally includes the time-varying mesh stiffness and transmission error without ad hoc

specification of these factors. Parker (2000) also rigorously proved the effectiveness of

using planet phasing schemes to suppress planetary gear vibration.

The experimental studies on practical planetary gear vibrations are scarce due to the

difficult access to the internal gears. Chiang and Badgley (1973) investigated the noise

spectra generated from ring gear vibrations in the planetary reduction gearbox of two

helicopters (Boeing-Vertol CH-47 and Bell UH-1D). Toda and Botman (1979)

experimentally showed that planetary gear vibration resulting from spacing errors can be

minimized by proper indexing of the planets. Botman (1980) presented some typical

measurement results on the planetary gear of a PT6 aircraft engine. His experiments

showed some peculiar behavior of planetary gear vibration regarding load sharing,

response due to gear errors, and dynamic instability. Hidaka

experimentally studied the dynamic behavior of a

published a series of reports (Hidaka et al, 1976a,b;

and his colleagues

planetary gear andStoeckicht

1977; 1979a-d). Their reports

studied some important issues such as load distribution, effect of different meshing-phase

among sun/ring-planet meshes, etc. Velex et al. (1994) matched the natural frequency

measurement of a Stoeckicht epicyclic train with their finite element calculations. Rakhit
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(1997) measured the subsynchronous vibrations at the turbine bearings in a gas

turbogenerator and proposed a design of the epicyclic gearbox to reduce the vibration.

Kahraman (1999) developed a generalized model to predict load sharing of planets under

quasi-static conditions and validated the model with experiments.

According to a comprehensive literature research, less analytical investigations

have been done on planetary gear dynamics than those for parallel shaft gears. This is

largely due to the modeling complexity of planetary gears. Important complications

include multiple mesh contacts, detailed kinematics, mesh stiffness variation,

transmission error excitation, contact loss nonlinearity, elastic ring gear vibration and

geometric imperfections. Most previous research uses numerical or experimental methods

to examine specific planetary gear systems. Some critical issues remain unsolved and

require systematic analytical study.

1.2 Critical Topics

The fundamental task of analytical planetary gear research is to build a dynamic

model. For different analysis purposes, there are several modeling choices such as a

simple dynamic factor model, compliance tooth model, torsional model, and geared rotor

dynamic model (Ozguven and Houser, 1988). According to the source-path-receiver

relationship between the planetary gear, bearing/mounting, and the cabin, different

boundaries can be selected for building the model. This study focuses on the

understanding of planetary gear dynamic behavior, so a single stage gearset with discrete
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elements is the basic model for investigation. In previous lumped-parameter models

(Cunliffe et al., 1974; Botman 1976; Kahraman, 1994a, b, c), the gyroscopic effects

caused by carrier rotation have not been considered. Because planetary gears have planets

mounted on the rotating carrier, the Coriolis and centripetal accelerations caused by the

carrier rotation introduce gyroscopic terms into the system model. For high-speed

applications such as aircraft engines (30,000 rpm), gyroscopic effects may heavily impact

the system stability and behavior. This project will develop a planetary gear model

including the gyroscopic effects, contact loss nonlinearity, mesh stiffness variation, and

static transmission error excitation. Despite the use of the term planetary gear, this model

is applicable for epicyclic gears with any configuration (fixed/floating sun, ring, and

carrier, and non-equally spaced planets). The model is the fundamental tool for the

analytical research.

The free vibration analysis calculates critical parameters such as natural frequencies

and vibration modes that are essential for almost all dynamic investigations. Cunliffe et

al. (1974) numerically identified the planetary gear natural frequencies and vibration

modes for a specific thirteen degree-of-freedom system. Similar work has been done by

Botman (1976), Frater et al. (1983), and Kahraman (1994c) for other example planetary

gears, but no systematic characterization has been obtained. This project reveals the

unique structure of natural frequency spectra and vibration modes due to the cyclic

symmetry of planetary gears (Lin and Parker, 1999a). All the vibration modes are

classified into rotational, translational and planet modes with distinctive properties. The

structured vibration modes are rigorously characterized for general epicyclic gears and
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validatedby the computational results from a finite element model. These well-defined

properties are not valid when planets are arbitrarily spaced, but still apply to practically

important case of diametrically opposed planets (Lin and Parker, 2000a). The free

vibration properties are very useful for further analyses of planetary gear dynamics,

including eigensensitivity to design parameters, natural frequency veering, planet mesh

phasing, and parametric instabilities from mesh stiffness variations.

Another key issue is how design parameters affect the natural frequencies and

vibration modes. During the design process, model parameters are often altered to

evaluate alternative design choices, reduce weight, and tune the system frequencies to

avoid resonance. The influence of design parameters on planetary gear natural

frequencies was touched on in a few papers, but general conclusions were not presented.

In the plots of natural frequencies versus design parameters, veering phenomena (Leissa,

1974; Perkins and Mote, 1986) often occur and obstruct the tracing of eigenvalue loci

under parameter changes. In the veering neighborhood, where two eigenvalue loci

approach each other and then abruptly veer away, the veering vibration modes are

strongly coupled and change dramatically (Figure 1.3). It is necessary to systematically

study natural frequency and vibration mode sensitivities and their veering characters to

identify the parameters critical to planetary gear vibration. In addition, practical planetary

gears may be mistuned by mesh stiffness variation, manufacturing imperfections and

assembling errors. For some symmetric structures, such as turbine blades, space

antennae, and multi-span beams, small disorders may dramatically change the vibration
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Figure 1.4 Stability chart of Mathieu equation 5?+ (6" - 2ecos2t)x = 0 (Meirovitch,

1970). The hatched areas are instability regions.

modes and result in mode localization (Pierre, 1988; Comwell and Bendiksen, 1992;

Happawana et al., 1998). Vibration modes with dominant motion localized in one planet

lead to load sharing unbalance, which can severely undermine the power transfer

efficiency and damage the gear teeth and bearings. This work presents a thorough

eigensensitivity analysis of the natural frequencies and vibration modes to key model

parameters for both tuned (cyclically symmetric) and mistuned planetary gears. The

parameters considered include mesh/support stiffnesses, component masses, moments of

inertia, and operating speed. Taking advantage of the structured vibration mode
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properties, natural frequency sensitivities are expressed in simple, closed-form formulae

which relate the sensitivities to modal strain and kinetic energy (Lin and Parker, 1999b).

Well-defined veering rules are derived from these formulae and vibration mode

properties to predict veering and its strength. The influence of design parameters is

examined through a benchmark example. The knowledge of natural frequency spectra,

vibration mode properties, eigensensitivity formulae, and special veering rules are

combined to provide considerable insight into planetary gear free vibration.

It is well known that mesh stiffness variation is a major excitation source of gear

vibration. For spur gears, the time-varying stiffness is caused by the alternating number

of teeth in contact. It is a periodic function at mesh frequency, which is the number of

tooth mesh cycles per second. The mesh stiffness variation serves as a parametric

excitation and results in instability under certain conditions. Parametric instabilities are

particularly dangerous because they can occur at excitation frequencies well below the

system natural frequencies. The mesh stiffness variation can be further complicated by

the interaction of transmission error excitation (Smith, 1983) and contact loss

nonlinearity (Blankenship and Kahraman, 1995; Kahraman and Blankenship, 1996,

1997). Literature reviews of parametrically excited systems can be found in the work of

Ibrahim and Barr (1978). For a single pair of gears excited by harmonically varying

stiffness, Bollinger and Harker (1967) used the one degree-of-freedom Mathieu equation

to determine the instability regions. The instability conditions are ot_en illustrated in the

plots of the exciting frequency versus the amplitude of varying stiffness, as shown in

Figure 1.4. Benton and Seireg (1978, 1980a) obtained the response to mesh stiffness
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variation and extemal excitations at integer multiples of the rotation speed. They

experimentally verify the resonance region obtained from simulation and demonstrated

the damage of parametric instability on gear teeth. Amabili and Rivola (1997) studied the

steady state response and stability of the single degree of freedom system with time-

varying stiffness and damping. Other researchers (Benton and Seireg, 1981; Kahraman

and Blankenship, 1996; Nataraj and Whitman, 1997; Nataraj and Arakere, 1999) also

investigated gear parametric instabilities using single degree-of-freedom models. For

multi-mesh gear systems, it is surprising to find little investigation on parametric

instability in the published literature. Although Benton and Seireg (1980b, 1981) studied

a gear system with two meshes, they uncoupled the model into two single degree-of-

freedom equations with some simplifications. Their conclusions on the mesh stiffness

phasing effect contradict another investigation (Tordion and Gauvin, 1977) using an

infinite determinant analysis (Bolotin, 1964). This conflict will be clarified using

perturbation analysis (Hsu, 1963, 1965; Nayfeh and Mook, 1979) and numerical

integration methods. In addition, this work extends parametric analysis in two-stage gear

systems to planetary gears where parametric excitations are more complicated as

different contact ratios and phasing conditions exist between the sun-planet and ring-

planet meshes. August and Kasuba (1986) and Velex and Flamand (1996) numerically

computed dynamic responses to mesh stiffiaess variations for planetary gears with three

sequential phased planets. Their results showed the dramatic impacts of mesh stiffness

variation on dynamic response, tooth loading, and load sharing among planets. The

operating conditions leading to planetary gear parametric instability have not been
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analytically investigated. The well-defined vibration mode properties will be used to

derive the operating conditions leading to planetary gear instability. The boundaries are

expressed in simple forms and the effects of contact ratios and mesh phasing are

analytically investigated. In practical design, planet mesh-phasing schemes are often

applied to cancel or neutralize the excitations from transmission errors (Seager_ 1975;

Kahramam 1994a; Kahraman and Blankenship, 1994: Parker, 2000). This study shows

that particular instabilities are eliminated under certain phasing conditions, which can be

achieved by selection of design parameters according to the analytical results. Dynamic

response and tooth separations induced by parametric instability are numerically

examined.

1.3 Scope of Investigation

The scope of this project is to advance the modeling and understanding of planetary

gear dynamics and analytically examine certain critical factors affecting planetary gear

noise and vibration. This research focuses on the analytical investigation of the following

specific tasks.

• Derive a lumped-parameter model for spur planetary gears, including different planet

phasing, gyroscopic effects, mesh stiffness variation, and transmission error

excitation. The model is valid for general epicyclic gears with any number of planets

and will be the fundamental tool for further research.

NASA/CR--2001-210939 12



• Analytically characterize the unique structure of the natural frequency spectra and

vibration modes of general planetary gears. The cases with equally and arbitrarily

spaced planets (including diametrically opposed planets) are considered.

• Use the vibration mode properties to obtain simple, closed-form formulae for the

eigensensitivities to important design parameters. According to these formulae and

characterized natural frequency veering rules, the effects of design parameter changes

on planetary gear free vibration are investigated.

• Investigate the parametric instabilities caused by multiple time-varying mesh

stiffnesses. Two-stage gear systems are examined first to clarify pervious conflicts and

derive simple expressions of instability boundaries. Then, the analytical method is

extended to planetary gear systems. The well-defined modal properties are used to

identify the effects of contact ratios and mesh phasing on planetary gear parametric

instability.

NASA/CRy2001-210939 13





CHAPTER 2

PLANETARY GEAR MODELING

2.1 Modeling Considerations

Lumped-parameter modeling is used in this project for dynamic analysis. All gears

are considered as rigid bodies and component supports are modeled by springs. A single-

mesh model is shown in Figure 2.1 for a pair of spur gears. All bearings/supports are

modeled as two perpendicular springs. The gear tooth meshes are represented by springs

acting on the line of action with parallel viscous dampers. The transmission error eCt), a

prescribed displacement input, is included as indicated. The tooth separation nonlinearity

acts as a step function h(t) where h=l when the teeth are in contact and h=O when the

teeth lose contact. This model can be extended to planetary gears with multiple meshes.

In planetary gear modeling, the following factors must be considered.

1. Assumptions. The analysis deals with planar vibration of single stage planetary gears.

Helical gears require three-dimensional modeling and are not considered here.

Excellent lubrication is assumed and tooth friction forces are neglected. No damping

is included, a/though a viscous damper could easily be added in parallel with the

mesh and bearing springs.

NASA/CR--2001-210939 15
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Figure 2.1 A single mesh model

2. Versatile configurations. There are many configurations for general epicyclic gears.

By fixing one or more of the coaxial components (carrier, ring, and sun), various

configurations such as planetary, star, and differential gears can be obtained. In

typical designs, one of the coaxial members is free to translate to enhance the load

sharing among planets. The number of planets and their positions also vary in

practical applications. The proposed model should accommodate these configurations

and be flexible for general applications.

3. System coordinates. Several choices of coordinates may be used in the modeling. The

frame can be fixed or rotating; the planet coordinates can be parallel to each other or

use local radial and tangential directions. The coordinate selection does not change

the physical properties of the system, but may greatly affect the analysis difficulty.
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2.2 System Equations

The planetary gear model used in our analysis is shown in Figure 2.2. Each

component has three degrees of freedom: two translations and one rotation. The model is

similar to that used by Kahraman (1994a) with two distinctions: (1) the planet deflections

are described by radial and tangential coordinates, and (2) gyroscopic effects induced by

carrier rotation are modeled. The radial and tangential coordinates more naturally

describe the vibration modes. Gyroscopic effects in high-speed applications such as

aircraft engines may dramatically alter the dynamic behavior from that at lower speeds.

The coordinates illustrated in Figure 2.2 are used. The carrier, ring and sun translations

xh, Yh, h=c,r,s and planet translations _,,,rl,,,n = 1,...Nare measured with respect to a

rotating frame of r reference i, j, k fixed to the carrier with origin o. The Xh, h=c,r,s are

directed towards the equilibrium position of planet 1, and _,,,r/,, are the radial and

tangential deflections of the n-th planet. The basis i, j, k rotates with the constant carrier

angular speed f2c. The rotational coordinates are u_, = rhOh ,h = c,r,s,1,... N, where Oh is

the component rotation; rh is the base circle radius for the sun, ring and planet, and the

radius of the circle passing through the planet centers for the carrier. Circumferential

planet locations are specified by the fixed angles 9/,, where q/, is measured relative to the

rotating basis vector i so that _'1 = 0. The details of the model derivative are given in Lin

and Parker (1999a). The equations of motion are

Mq + f2cGq + [K b + K,, - f2_ Kn ]q = T(t) + F(t) (2.1)

q = (Xc,Yc,Uc,Xr,Yr,Ur,Xs,Ys,Us,_l,r]l,Ul.'".,(N,r]N ,UN)

carrier ring sun planet 1 planet N
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where the matrix components are given in the Appendix A. M is the inertia matrix and

Kb is the bearing stiffness matrix. G and K_ result from high-speed carrier rotation and

have not been included in published models.

associated with changing numbers of teeth in

To model the time-varying stiffness

contact at each mesh, Km can be

decomposed into mean and time-varying components. Tooth separation nonlinearity is

implicitly included in Kin(t). T(t) is the applied external torque and F(t) represents the

static transmission error excitation.

This comprehensive model is the fundamental tool for further research of planetary

gear dynamics. It is readily applicable for specific configurations of epicyclic gears.

Assigning a large value to a transverse or torsional stiffness restrains the translation or

rotation of a component: assigning a very compliant stiffness in a component support

floats the component.

planet 2 _ _ k,.

ki_ Itz k_ .- planet 1

Figure 2.2 Planetary gear model
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CHAPTER 3

NATURAL FREQUENCY AND VIBRATION MODE PROPERTIES

This chapter analytically investigates the natural frequency spectra and vibration

modes of general planetary gears. The cyclic symmetry of planetary gears leads to

highly-structured free vibration characteristics that are identified herein. Unique

properties of the eigensolutions for the linear time-invariant case are presented for an

example system. The identified properties are then mathematically shown to be

characteristics of general planetary gears.

3.1 Equally Spaced Planets

The free vibration of the linear, time-invariant representation is

M/_ + _cG/l + (K - fJ_K_ )q = 0 (3.1)

where K=Kb+Km. The carrier speed is assumed to be small and the gyroscopic terms G

and K_ are neglected. The associated eigenvalue problem of (3.1) is

co/ZMq_i =K¢, (3.2)

where a_ are natural frequencies and ¢i = [Pc,Pr,Ps,Pl,'"P_ ]r are vibration modes with

Ph = [Xh,Yh,Uh] r'h = c,r,s for the carrier, ring and sun, and p, = [(,, r/,, , u,, ] r for the

planets. At this stage, the planets are assumed identical and equally spaced; all planet

NASA/CR--2001-210939 19



bearing stiffnesses are equal kp,,=kp, all sun-planet mesh stiffnesses are equal (k_,=kv,);

and all ring-planet mesh stiffnesses are equal k_,=kw. With these specifications, planetary

gears are cyclically symmetric structures that can be divided into N identical sectors. The

cyclic symmetry of planetary gears leads to distinctive natural frequency and vibration

mode properties that will be demonstrated analytically.

We first illustrate the eigensolution properties through a numerical example with

the parameters in Appendix B case I. Typical vibration modes for N--4 are shown in

Figure 3.1, where the movements of the carrier and ring are not shown in order to clarify

the figures. Some interesting conclusions are obtained from Figure 3.1 :

1. Six natural frequencies always have multiplicity m=l for different N. Except for the

zero natural frequency, their values increase as additional planets are introduced.

Their associated vibration modes have pure rotation of the carrier, ring and sun

(Figure 3.1 a), so these modes are named rotational modes.

2. Six natural frequencies always have multiplicity m=2 for various N. Some natural

frequencies increase monotonically while others decrease monotonically as N

increases. The carrier, ring and sun have pure translation in the corresponding

vibration modes (Figure 3.1 b), so these modes are defined as translational modes.

Three natural frequencies have multiplicity m=N-3 and exist only if N>3. Their

associated vibration modes are termed planet modes because the cartier, ring and sun

do not move; only planet motion occurs in these modes (Figure 3.1 c, d, e). For each

of these three natural frequencies, the corresponding vibration modes span an N-3

dimensional eigenspace.

.
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This example shows there are at most fifteen different natural frequencies for N__3;

additional planets only change the multiplicity of the planet mode natural frequencies.

When N<3, all natural frequencies are distinct and the vibration modes do not have

special structure because of the loss of cyclic symmetry. In nearly all planetary gear

designs, three or more planets are used to take advantage of the load sharing among

planets and subsequent discussion is restricted to this case. The eigensolution properties

identified in the example are analytically shown to be true for general planetary gears

(Lin and Parker, 1999a) and summarized below.

Planet Mode. A planet mode has the form

_, = [0,0,0, WlPl,"" wNp I ]r

where w, are scalars (Wl=l) satisfying

Xw, :0 X'" =0 X-, :0

Planet modes have the following characteristics:

(i) The associated natural frequency has multiplicity N-3,

(ii) The translation and rotation of the carrier, ring and sun are zero.

(iii)

(3.3)

(3.4)

The planet deflections are scalar multiples of the first (or any other arbitrary)

planet's deflection components.

Rotational Mode. A rotational mode has the form

O, = [P c ,P r ,P s ,Pl ,'" ,Pl ]T

Rotational modes have the following characteristics:

(i) The associated natural frequency is distinct,

(3.5)
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(ii) The translation of the carrier, ring and sun are zero, i.e., p_, = 10,0,uj,]T, wherej=c,r,s,

(iii) All planets have identical deflections, i.e., pl = P2 ..... px = [(_,rl].u]] 7.

Translational Mode• A pair of translational modes has the form

Pc

Pr

P_

(cos _IP_ + sin _1Pl )

Icos qZNp 1 + sin qZU_ J)

m

Pc

Pr

Ps

(-sin lylp I + cos _lPl )

(-sin _,Pl + cos ¢/uPl )

(3.6)

(iii)

Translational modes have the following characteristics:

(i) The associated natural frequency has multiplicity two.

(ii) The rotation of the carrier, ring and sun are zero. Furthermore, the carrier, ring, and

sun translations in the degenerate modes _/and _ are related by pj, = [xh,yh,0] r and

PJ, = [-yh,xj,,0] r , h=c,r,s,

The planet deflections for a pair of vibration modes are related by

1
P,, ] = L- sin 9/. I cos _,, ljkff_ J (3.7)

where p,, and ft, = [(,,ft,,h-,] r are the deflections of the n-th planet in q_ and _. I is

a 3×3 identity matrix and _,, = 2tr(n - 1) / N.
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(a) rotational mode (b) translational mode

(c) radial planet mode (d) tangential planet mode

(e) rotational planet mode

Figure 3.1 Typical vibration modes. Dashed lines are the equilibrium positions

and solid lines are the deflected positions. Dots represent the component centers.
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3.2 Arbitrarily Spaced Planets

In general, much of the above well-defined structure of the natural frequency

spectra and vibration modes is lost when the planets are arbitrarily spaced. A notable

exception is the planet modes. Additionally, for the practically important case of

diametrically opposed planets, the free vibration retains its unique properties.

Planet Mode: As for planetary gears with equally spaced planets, systems with

arbitrary planet spacing always have three sets of planet modes of the form (3.3) with

multiplicity N-3. Only the coefficients w, obtained from (3.4) are affected by _/,.

Rotational Mode: In general, the rotational and translational modes couple together

for arbitrary planet spacing and no special modal structure can be identified. For certain

planet spacing, however, they still have distinguishing properties. A case of particular

interest is that of diametrically opposed planets, which is common in industrial

applications. Consider a system with each of IV�)- pairs of planets located along arbitrarily

oriented diameters. A pair of opposing planets have the position relation _,+x: = 9/,+_Z In

this case,

_-[w, sin_,, = 0 _-'_w, cos_, = 0 _-"_w,, = 0 (3.8)

Accordingly, systems satisfying (3.8) have six rotational modes with property (3.5). For

arbitrarily distributed planets not satisfying (3.8), rotational modes do not exist.

Translational Mode: While the translational modes couple with the rotational

modes for truly arbitrary planet spacing, they retain their structure for systems satisfying

(3.8). The notable difference with equally spaced planet systems is that the natural

frequencies are no longer degenerate because the cyclic symmetry is disturbed. To start
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with, the planet deflection relations in a translational mode are derived from (3.7) for any

three planets i, j, k,

sin(M, - Ms )P, + sin(M1 - M, )P, + sin(M, - M, )Pl = 0 (3.9)

Thus, the n-th planet deflection can be expressed as a linear combination of pl and p2.

The component modal deflections for a translational mode become

Ph = [xh'Yh'Uh]' h = c,r,s, p,, = [sin(M2 -M,,)Pl +sinM,,P2]/sinM2 (3.10)

Therefore, planetary gears with planet positions satisfying (3.8) (for example,

diametrically opposed planets) have twelve distinct vibration modes that have the special

structure (3.10) of a translational mode.

3.3 Modal Strain and Kinetic Energy

The vibration modes can be further characterized by modal strain and kinetic

energy. The total modal strain energy U and kinetic energy T are related to the natural

frequencies and vibration modes by

1 T N

U =-_4)i K¢, =U c +U., +U r +Urn +U s 4-Usu '{-Z(Un +Urn +Us, ,)
n=l

(3.11)

N

1 2 r
r:  co, = r. +re,,+rr +rs,, +Z(r. +L,,)

n=l

(3.12)

where (i) Uh, Uhu, h = c,r,s are the strain energies in the translational and rotational

support springs, respectively, of the carrier, ring and sun; (ii) U., Ur., Us., n=l ..... N are

the strain energies in the n-th planet bearing, ring-planet mesh and sun-planet mesh; and
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(iii) Th, Th.. h=c, r, s and 7"., T.,, are the modal translational and rotational kinetic

energies, respectively, of the carrier, ring, sun, and planets. The detail of these individual

energies are

1 k _ ,
U,, = -4 ,,(x; + Yh),

l _

u,, = 2 k,,[(8,,_)"+ (8,,,)"1,

hilt _ _ 2

T,,=T_'(xg +yh).

mp _ _

L = -5-o_,((,_ + _,7),

1 2

U,,,,= 7 k,,,,uh.

U.,, = =1k,,,(8,,,)-',

11, ,

T_,- _ . co,-u;,,

Ip , ,

T,,,, 21p _'u;

h = c,r,s

1

u., = _-k,.,(8,.,)2

h = c,r,s (3.13)

where the mesh and bearing deflections 8 are defmed below.

sun-planet mesh: 8.=y._cosqzs,,-xsingt_,-f,,sinct-rl,,coscc+u+u+e., ' (3.14)

ring-planet mesh: J., =),_ cos_/r. -x_ sin_u., -(. sina_ +r/° cosar +u -u. +e_. (3.15)

planet bearing radial: d., = y_ singt + x_ cos_,, - (. (3.16)

planet bearing tangential: 8., = y_ cos gt. - x_ sin _. -17. + u_ (3.17)

For the example planetary gear (Appendix B, case II), the modal strain and kinetic energy

distributions are shown in Figure 3.2, and the dominant motion and strain energy are

listed in Table 3.1. According to (3.13), the dominant kinetic energy occurs in the

component with dominant motion. Modal strain energy indicates those vibration modes

most susceptible to parameter variation and identifies the most heavily loaded component

for response. In the next chapter, the modal energy distribution will be used in the

derivation of simple formulae to calculate eigensensitivity to key design parameters.
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3.4 Discussions

Planet modes of multiplicity N-3 are remarkably insensitive to planet location and

retain their special properties for arbitrary planet spacing. Coupling between rotational

and translational modes occurs for arbitrary planet spacing, and distinct properties can

not be identified. For systems satisfying (3.8), however, rotational and translational

modes have structured properties. This includes the common case of equally spaced and

diametrically opposed planet pairs. The foregoing development applies to general

epicyclic gear configurations. Configurations having fixed or floating components are

obtained by letting the associated bearing stiffness approach zero or infinity to obtain the

eigensolution properties. For example, for the cases of a fixed ring, fixed sun or fixed

carrier, a 3_+2) degree of freedom system is obtained. The vibration modes in such

systems consist of five rotational, five pairs of translational and three groups of planet

modes.

The free vibration properties have been validated through a finite element

computation. A finite element model (Figure 3.3) for this system was built by Agashe

(1998) and Parker, et al. (2000) and analyzed with CALYX (Vijayakar, 1991).

Computational modal analyses were performed by applying impulse inputs and obtaining

the frequency response functions. The identified natural frequencies match the analytical

results (Table 3.2) within 3.3 percent difference.
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(a) Normalized modal strain energy at the sun/planet meshes (1-4), ring/planet meshes

(5-8), planet bearings (9-12), carrier and sun bearings (13, 14).

Jm0de2. 04,mo eJ°i,I.. °I
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

0 ' ' 0
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

0.2 0.2 0.1 . -------- --m---- .

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12

0.2 _ 0.51 I__m 0.5

0 0 J--I 0 ....
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

(b) Normalized modal kinetic energy at the carrier, sun, planet translations (1,2,3-6), and

carrier, sun, planet rotations (7,8,9-12).

Figure 3.2 Modal energy distributions of the system in Appendix B, case II.
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No. f(Hz) Type Dominant motion Dominant strain ener_'

1 0 R Rigid body mode

2,3 825 T All components Carrier. sun bearings

4 1661 R All components Planet bearings

5 1808 P Planet radial translation Planet bearings

6,7 1834 T Sun, planet translation Sun, planet bearings

8 1985 R Sun rotation, planet translation Planet bearings

9,10 2326 T Sun. planet translation Sun, planet bearings

11 5964 P Planet tangential translation All meshes

12,13 6429 T Planets Ring-planet meshes

14 6451 R Planets Ring-planet meshes

15 6982 P Planet rotation All meshes

16,17 10430 T Sun translation Sun-planet meshes

18 13068 R Sun rotation Sun-planet meshes

Table 3.1 Dominant motion and modal strain energy in the vibration modes of the

system in Appendix B. R: rotational mode, T: translational mode, P: planet mode.

Mode Type Trans Rot Plan Trans Rot Trans

FEM (Hz) 778 1144 1729 1676 1723 2110

Analytical (Hz) 769 1156 1609 1710 1781 2175

1.2 -1.0 2.3 -2.0 -3.3 -3.0Difference (%)

Table 3.2 Comparison of analytical and FEM natural frequency analyses.
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Figure 3.3 Finite element model of the planetary gear

The well-defined eigensolution properties are useful for subsequent research

because almost all analytical investigation of planetary gear vibration phenomena

ultimately require the natural frequencies and vibration modes. This includes, for

example, critical dynamic behaviors such as forced response to static transmission error,

use of planet phasing to eliminate excitation of particular modes, parametric instability

from time-varying mesh stiffness, contact loss nonlinearities, natural frequency and

vibration mode sensitivity to key design parameters and gyroscopic effects. The specific

properties characterized in this paper theoretically explain the selective participation of
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the different classes of vibration modes in planetary gear dynamic response (Parker et al.,

2000a; Parker, 2000). Additionally, the structured vibration mode properties lead to

simple, exact formulae to calculate natural frequency and vibration mode sensitivity to

parameter changes (Lin and Parker, 1999b). Using these properties, well-defined veering

rules of natural frequency loci are analytically derived (Lin and Parker, 2000b). These

special veering rules help to trace the evolution of the loci for changes in the design

parameters and identify the veering zones where vibration modes undergo dramatic

changes. Apart from analytical applications, the identified natural frequency structure

provides important information for tuning the system frequencies to avoid resonance.

There are at most 15 different natural frequencies in general planetary gears with N

planets, so there are only 15 potential resonant frequencies.
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CHAPTER 4

EIGENSENSITIVITY TO DESIGN PARAMETERS

During the design process, system parameters are varied to evaluate alternative

design choices, avoid resonances, optimize load distribution, and reduce weight. It is

important to characterize the effects of parameter variations on the natural frequencies

and vibration modes for effective vibration tuning. In planetary gear dynamic models

(Figure 2.2), the key design parameters include the mesh stiffnesses, support/bearing

stiffnesses, component masses, and moments of inertia. The influence of some design

parameters on planetary gear natural frequencies was touched on in a few papers. Botman

(1976) and Cunliffe et al. (1974) both presented plots of natural frequencies versus planet

bearing stiffness. Kahraman (1994c) showed the effects of mesh/bearing stiffnesses on

the natural frequencies in his torsional model of planetary gears. Saada and Velex (1995)

discussed the influence of ring support stiffness on free vibration. These analyses were

based on parametric studies of example planetary gears and assume the planetary gears to

be cyclically symmetric (tuned) systems. Eigensensitivity analysis for mistuned systems

is necessary to identify the critical modes that are susceptible to irregularity. Frater et al.

(1983) studied the vibration modes with one unbalanced mesh stiffness, but general
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conclusions were not obtained. This project analytically investigates the natural

frequency and vibration mode sensitivity to most system parameters such as

mesh/bearingstiffnesses,componentmassesandmomentsof inertia.Simple,closed-form

expressionsare obtained to calculateeigensensitivitiesfor both tuned and mistuned

system.In addition,eigenvalueveeringphenomenaareinvestigatedto identify dramatic

changesof naturalfrequenciesandstrongcouplingof vibrationmodes.Designguidelines

are summarizedfrom eigensensitivityand veering analysesto predict influences of

systemparametersonplanetarygearfreevibration.

4.1 Calculation of Eigensensitivity

The eigensensitivity analysis calculates natural frequency and vibration mode

derivatives with respect to stiffnesses, masses, moments of inertia and the carrier rotation

speed $2,,. Eigensensitivity to stiffness and inertia design parameters are examined in the

absence of gyroscopic effects £2o Gyroscopic effects are important in high-speed

applications such as aircraft engines, and eigensensitivity with respect to .t'2cis studied

separately in section 4.4. The eigenvalue problem for the study is in form (3.2), i.e.,

(K - 2,M)¢, : 0 (4.1)

where 2,=c_ 2. The eigensensitivity for problems in the form (4.1) has been thoroughly

investigated (Courant and Hilbert, 1953; Adelman and Haftka, 1986; Friswell, 1996) and

the necessary results are introduced below. The unique modal properties of planetary
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gears are then invoked to reduce these general results to simple expressions specific to

planetary gears.

Let ( )' and ( )" denote the first and second derivatives with respect to a model

parameter (i.e. mesh/bearing stiffness, component mass or moment of inertia). For

simplicity, the eigenvalue derivatives El' and _it' are calculated; the relations cO"--A, 7(2cO)

and cO'=(22iAi"-2iz)/(4cO 3) yield the natural frequency sensitivities. For a distinct

eigenvalue, the eigensensitivities are (Fox and Kapoor, 1968; Rogers, 1970)

2/= _f (K' - _M')O, (4.2)

1 _ ___ Cr (K'- 2,n ')¢,

¢,'= - _-(_, M '0, )¢_ + /-',=m 2, - 2 k _k
(4.3)

2,"= 2¢,r (K '- 2,M ')0, + Of (K"- 2,M"- 22/M ')_, (4.4)

For the case of degenerate eigenvalues, consider a system having a group of

eigenvalues/_1=... =,_n with multiplicity m. The first-order eigenvalue derivatives ,,1,'are

the eigenvalues of

Da, : 2.(a,, D = FT(K '- _M')F (4.5)

where F=[?_ ..... 7m] is an arbitrary set of independent eigenvectors associated with this

degenerate eigenvalue and is normalized such that F rMF = Ira×m . For the case when all

2/" obtained from (4.5) are distinct, the ai are uniquely obtained with the normalization

aiTai =1. This procedure determines the set of independent eigenvectors _i=Fai that admit

continuous change of the eigenvectors as the degenerate eigenvalues split into distinct

ones when a parameter is varied.

The eigenvector derivatives for distinct Xi' are expressed as (Friswell, 1996)
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where

0,'= v, + Oc,. i = 1,.-.,m (4.6)

L T • t
0k (2,M -K )0,

k=m+l

20r (K'-2 M')v, + 0r (K'- 2 m"- 22; m')¢,

% = 2,,- 2"
i

% = _I_TM" _
2

The second derivatives are

(4.7)

j :¢:i (4.8)

(4.9)

27= 20f(K'-2iM')v , +0Y(K"-2,M'-22fM')Oi, i=l,...,m (4.10)

For the case when all _'obtained from (4.5) are degenerate, the a, are not unique

and hence 0_, i=1 ..... m are arbitrary in the eigenspace. The eigenvector derivatives can

not be determined when these degenerate modes do not separate. However, /Li" can be

obtained from the eigenvalues of (Friswell, 1996)

E = 20 r (K'- 2,M')V + • 7 (K"- AIM"- 22,' M')(I) (4.11)

where V=[vl ..... Vm] is determined by (4.7). 2_ "are not affected by the selection of O.

The foregoing development is used subsequently to derive general, closed-form

eigensensitivity relations for 2i; 0" and 2i" for planetary gears. These expressions yield

eigensolution approximations according to

92
_= ;t + Zw-I, =,o(P- P0),

pdp

,90
0 = 0+ _-_1_ =po(P- Po)

sap
(4.12)

where p represents any system parameter with nominal value P0 and multiple parameter

perturbations are permitted. Eigensolutions 2, 0 are for a nominal set of model
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parameters referred to as the unperturbed system, and the derivatives are evaluated for

this unperturbed system. Eigensolutions 2, _ are for the perturbed system with varied

parameters. The unperturbed system is taken to be tuned in this study. Note that this does

not meaningfully restrict the results because parameter variations leading to both tuned

and mistuned perturbed systems are examined.

4.2 Eigensensitivity to Mesh and Support Stiffnesses

The stiffiaesses under consideration (Figure 2.2) include mesh stiffnesses k,-., ks.,

transverse support stiffnesses ko kr, ks, k., and rotational support stiffnesses kc., k,_,, k_..

The natural frequency sensitivity to a certain stiffness is found to be uniquely associated

with the modal strain energy occurring in that spring. To demonstrate the procedure, let

the sun-planet mesh stiffness ks. be the varied parameter.

4.2.1 Tuned System

Considered the case where all sun-planet mesh stiffnesses ksn=kw are altered

equally so the perturbed system remains tuned. For rotational modes, the

eigensensitivities are obtained from (4.2)-(4.4)

N

B_ _ _-_(b._;,) 2 (4.13)
c)k sp n=l

L N k i4.8;°
°_ - Z Z g--_ q). (4.14)

O_ sp k=l n=l
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where 61,, is the spring deformation of the sun-planet n mesh in mode _ given (3.14).

The rotational mode property (3.5) dictates that all sun-planet mesh deformations are

equal, i.e., 6j',, = _5_iI , so (4.13) becomes

°_)_ - N(d_,) 2 (4.16)
o_kw

In (4.14), 0_* is expressed as a modal expansion of eigenvectors, and the contribution of

each eigenvector is readily obtained from the coefficients of 0,. When two eigenvalues iL,

and ilk are nearly equal, the influence of 0, on q_-'is dominant because the denominator in

its coefficient is small. In such cases, the second derivative q_" is also large, and the

natural frequency changes rapidly with ksp.

The translational mode eigenvalues il_.2 do not separate because the perturbed

system remains tuned. Thus, the matrix D in (4.5) has degenerate eigenvalues ill ; il2:

Accordingly, the unperturbed eigenvectors q_1.2can not be uniquely determined from the

procedure associated with (4.5), and _=[_1, 02_]are an arbitrary pair of translational modes

of the unperturbed system. From (4.5), K1', K '2 are the eigenvalues of

N F 1 2 1

Y/(G') aLaL
D= * TK'q'= ";:7=,LaLd . (a;2o)=

(4.17)
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V =Use of the translational mode property (3.6) yields _...,,,=_.......

N I 2 ,,Z,,=,<,,as,,= o. Thus, the eigenvalues of D (i.e., 21, _3 are degenerate and have the

form (4.13) for i=1,2. From (4.11) and the translational mode properties, ;tj ", _" are

2(4,,4,,)-
- , i,j = 1,2 (4.18)

Planet modes are also degenerate and the procedure is similar to that for

translational modes. For planet modes q_=[01 ..... _], the elements of the matrix D are

_j = _ _I,_ 2. for ij=l ..... m. Applying planet mode property (3.3) to calculate _;,

results in Dl1=...= D,,,, and Do=O, i_'. It follows that all )_i' of a group of planet modes

are equal and can also be expressed as (4.13) for i,j=l ..... m. In the same way, all 2,;"

U=I ..... m are equal and of the form (4.18).

Equation (4.1 3), which is valid for all three types of vibration modes, can be related

to the modal strain energy U in _i. With the definition of strain energy U,, in (3.13),

(4.13) becomes

o_2_ 2 N o_o_i 1 N

-ksp_.,U,, - _.,U,, (4.19),=1 ' 3k_ r cO,ks,, ,=,

Equation (4.19) allows one to obtain the natural frequency sensitivity to sun-planet mesh

stiffness by inspection of the modal strain energy distribution.

As an example, consider a planetary gear used in the transmission of a U.S. Army

OH-58 helicopter. The nominal model parameters are listed in Appendix B, case II. The

natural frequencies from (4.1) are shown in Figure 4.1a for a range k_p. The strain
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energies of each spring are calculated according to (3.11) and their distribution in mode

16 (a translational mode) is shown in Figure 4.1b,c for two cases: ksp=70 N/lam and

k_p=500 N/_m. The associated vibration mode 016 is also shown for these two cases.

Little strain energy is stored in the sun-planet meshes Us, for case I, while substantial

strain energy results in case II. Consequently, col6 is more sensitive to k_p in case II than

in case I. This conclusion is consistent with the larger slope of the r.ol_locus for case I! in

Figure 4.1a. In fact, natural frequency sensitivities to all stiffnesses can be obtained

quantitatively directly from the strain energy distribution using (4.19) and analogous

relations (4.20) and (4.2 l) below.

k_, _ 2
32q _ ,2 tg_ _ u_, = U, .... h = c,r,s (4.20)
3k h - x;, + ) h = Uh, 3k_,, -_h

These relations apply for all three types of vibration modes. Expressions for _'and ,_"

for all of the stiffness parameters are collected in Lin and Parker (1999b). Recalling the

special properties of vibration modes, (4.19)-(4.21) imply that

1. Rotational modes are independent of the transverse support stiffnesses of the carrier,

ring, and sun because these components have no deformation of, and hence no modal

strain energy in, their transverse support springs. Thus, use of a "floating" sun, ring,

or carrier i.e., low stiffness support) has no impact on rotational modes.

2. Translational modes are similarly independent of the rotational support stiffnesses of

the carrier, ring, and sun.

3. Planet modes are insensitive to all carrier, ring, and sun support stiffnesses.
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Figure 4.1 (a) natural frequency versus the sun-planet mesh stiffness ksp. (b), (c) Mode 16

strain energy distribution in case I and case II. All U are defined in (3.11).
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4.2.2 Mistuned System

In practical planetary gears, mistuning may be caused by differing mesh stiffnesses

between planets due to differing numbers of teeth in contact, manufacturing variations,

and assembly errors. To study the effects of mistuning on eigensolutions, we examine the

sensitivity to parameter variations that differ between the planets. Consider an example

with only the first sun-planet mesh stiffness k.,1 varying from the nominal (unperturbed)

value ksp. The derivatives of the mass and stiffness matrices with respect to ks1 are

M'=M"=K"=0, K' = o_ / o_sl.

The eigensensitivities of the rotational modes are obtained from (4.2)-(4.4)

a4 _(g,)2 2
3/% = _ Us1 (4.22)

°_ - @k (4.23)
o_ksl k=l --

k_i

, L 2 )2
c_-2_3k_- Zk=_2,-----_ (6_klJ_' (4.24)

k*_

Equation (4.22) relates 2i" to the modal strain energy in the first sun-planet mesh.

Equations (4.22)-(4.24) are similar to (4.13)-(4.15) without the summation over n

because the varying parameter is located only at the first sun-planet mesh.

For translational modes, the eigensensitivities are (Lin and Parker, 1999b)

OlJ_l --(411) 2 , a4 --(_s21) 2 =0 (4.25)

(4.26)

_ 2(8_,_,) a¢2 -0
0_1 k=3-_Z_ ' aks21

(4.27)
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The behavior of 01 and _ is shown in Figure 4.2 for the example of Appendix B, case II.

A pair of translational mode natural frequencies separate as a disorder e=-k_l/kw-1 is

introduced. The modal strain energy distributions in the four sun-planet meshes are

shown for _" = 0, -0.1. 01 is sensitive to ks1 because of the high strain energy in the first

sun-planet mesh. _ has no strain energy in the first sun-planet mesh and is independent

of k_l. The linear ( 22 + Eksp,2t2" ) and quadratic ( _ + ekv,_' + c 2ksp/_" ) approximations of

the loci are shown in Figure 4.2 and agree well with the exact loci. These two loci

intersect exactly at c = 0 when there is only one disorder in the perturbed system. If one

more disorder &=ks2/ksp-1 = O. 1 is added at the second mesh (Figure 4.3), the two loci

suddenly change direction and veer away. For an initially tuned (cyclically symmetric)

system, two independent varying parameters (e.g., k_l and k_2) are necessary to break the

symmetry of both _1 and _ and cause frequency loci veering (Happawana et al., 1998).

The regular perturbation does not give a good approximation in the veering zone where

two loci are close to each other. Singular or improved perturbation methods are needed

(Pierre and Murthy, 1992; Wu, 1993; Chen et al., 1995; Lin and Lim, 1997). If the

number of planets N = 4 or 5, the planet modes have multiplicity re=l,2 and their

eigensensitivities are obtained from (4.22)-(4.24) or (4.25)-(4.27). When N>5,

eigensolutions of matrix D in (4.5) are difficult to achieve in closed-form, but can be

obtained numerically.
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Figure 4.2 Influence of the disorder e on the natural frequencies. Linear (...) and

quadratic (---) approximations agree well with the exact loci (--).
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Figure 4.3 Influence of two disorders on the natural frequencies. Another disorder

_=ks2/ksp-1 =0.1 at the second mesh is added to the system shown in Figure 4.2.
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4.3 Eigensensitivity to Gear Mass and Inertia

The parameters of interest consist of masses (me, m,, m_, rap) and moments of inertia

(I,,Ir, Is, Ip) for the carrier, ring, sun, and planets. When the perturbed system remains

tuned, the eigenvalue derivatives for the three types of modes are

o3%, - )_(xf, +.v_,)=---g,mr, Omh,' - ,_uf, =---g,,,lh h =c,r,s (4.28)
N

N :, .,,TN _ 2 _ T,,, (4.29)__
alp- °=,

O_lp -- n=l mp .=1 rp u Ip n=l

where Th, Thu, h=c, r, s and T,, 7",, are the modal kinetic energies defined in (3.12).

Expressions for _' and 2_" for all of the mass and inertia parameters are collected in Lin

and Parker (1999b). Figure 4.4a shows an example plot of the natural frequencies versus

the sun moment of inertia/_. Most natural frequencies are insensitive to changes in Is. The

kinetic energy distribution and vibration modes of mode 18 (a rotational mode) are

shown in Figure 4.4b,c for cases I and II. The sun has more rotational kinetic energy Tsu

in case I than in case II, so cols locus has larger slope in case I. Equations (4.28) and

(4.29) allow quantitative calculation of natural frequency sensitivity to all masses and

moments of inertia directly from the modal kinetic energy distributions. Considering the

properties of vibration modes, some conclusions are immediate from (4.28) and (4.29):

1. Rotational modes are independent of the masses of the carrier, ring, and sun because

such modes have no translations of these components.

2. Translational modes are similarly independent of the moments of inertia of the

carrier, ring, and sun.

3. Planet modes are independent of both masses and inertias of the carrier, ring, and sun.
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4.4 Eigensensitivity to Operating Speed

In high-speed applications (e.g. aircraft engines), gyroscopic effects may

significantly alter the system stability and dynamic behavior. Eigenvalue derivatives

evaluated for ,C2c=0 are calculated to assess the influence of operating speed on the

natural frequency spectrum. The gyroscopic eigenvalue problem of (3.1) is obtained from

the separable solution q = O_ej_°''

[-co,2M + jcof2cG + (K - (2_Ka)]_ , =0. (4.30)

For practical operating speeds .(2c=0 (i.e., subcritical), the eigenvalues remain purely

imaginary. Suppose a zero speed natural frequency c0 has multiplicity m and the

arbitrarily chosen independent eigenvectors are F=[?) ..... 2/.,] with normalization

FrMF = lmx,, , . While eigenvectors for .t2_0 are complex, the _ are real. Differentiation of

(4.30) with respect to $2c and evaluation at ,(2c=0 yield

(K - co,2M)¢, ' = (2o9,o9,'M- jco, G)Fa, = f (4.31)

where 0, = Fai. Applying solvability and normalization conditions results in an mxm

Hermitian eigenvalue problem

Da, = co'a,, D = jFrGF / 2 (4.32)

The natural frequency sensitivities 09" are obtained from the eigenvalues of (4.32) for the

three classes of vibration modes. Rotational mode natural frequencies are distinct and

(4.32) becomes a scalar equation. Hence co" = 0 because yfG7', = 0 for real Yi and skew-

symmetric G. For translational modes Yl and Y2, D and its eigenvalues are
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Figure 4.5 Natural frequency versus the carrier rotation speed

JE0 ,O=2 --)/ITG)/2 0 ' (_O1.2 =+ y/Gy_,/2 (4.33)

For a group of planet modes _ ..... 7/,, the properties (3.3) guarantee Dy -- y,rGyj

i_i. D,O, i=l ..... m because of the skew-symmetry of G.

mode natural frequency sensitivities vanish, i.e., co" = O.

Equation (4.33) can be used to approximate the frequency loci c_, = co, + I2cco_.

The result co'= 0 for rotational and planet modes at .(2,, = 0 indicates the natural

frequencies of these modes are scarcely affected by operating speed. Figure 4.5 shows the

=0 for

Thus, D=O and all planet
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first 10 frequency loci versus_,1 for the gear systemin Appendix B case II. The

rotationalmode(o94,098) and planet mode (o)5) loci are nearly flat lines and not sensitive

to operating speed. Translational mode frequencies (aZ,_.3_ _.7, a_.10) split as .Q,, is

increased from zero. In this example, _ and _ at ,(2,,=600 rad/s deviate about 10 percent

from the zero speed value. Typical helicopter carrier speeds are less than 100 rad/s. For

applications with high speed (e.g. turbofan and turboprop engine systems), heavy

component masses, and compliant stiffnesses, the gyroscopic effects can be more

significant. If a natural frequency locus has large slope and decreases to zero in the range

of operating speed, the stability and system behavior are dramatically impacted.

4.5 Natural Frequency Veering

In the plots of natural frequencies versus design parameters, eigenvalue veering

occurs, where two eigenvalue loci approach each other as a parameter is varied but then

abruptly veer away like two similar charges repelling (point B in Figure 4.6a). The

phenomenon has been studied extensively (Leissa, 1974; Perkins and Mote, 1986; Pierre,

1988, Chen and Ginsberg, 1992). The vibration modes of the veering eigenvalues are

strongly coupled and undergo dramatic changes in the veering neighborhood. In the case

of especially sharp veering, it is sometimes difficult to distinguish between intersection

and veering just by observing eigenvalue plots. When multiple curves veer or intersect

close together (Figure 4.6a), strong modal coupling, and the associated operating

condition response changes that occur, are not identifiable from frequency loci plots. The
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objective of this work is to analytically characterize the rules of eigenvalue veering in

planetary gear vibration. Simple rules emerge to predict if two eigenvalues veer or cross.

The veering sharpness is also calculated.

4.5.1 Veering/Crossing Criterion

A method for detecting eigenvalue veering/crossing in general dynamic systems is

developed by Perkins and Mote (1986). When two eigenvalue loci veer away, their loci

curvatures indicate the abruptness of curve direction changes. Perkins and Mote

estimated the loci curvature in the veering neighborhood using coupling factor

Z, = 2[¢f(K'- 2,M')¢_]-" , Zs = 2[¢_r(K'- 2"M')¢_]2 (4.34)
2,-2s 2 s -2,

The coupling factors Z,, Z, approximate the local curvatures and the coupling strength.

Figure 4.6b shows Z=2,14 = -2"18versus the varying parameter ksp for the veering loci o914

and o918 in Figure 4.6a. Notice the sharply changing vibration modes indicated in Figure

4.6b. The two veering loci exchange mode shapes from point A to C, even though the loci

do not intersect. The modes are strongly coupled at B and do not look like either of the

veering modes just outside the veering zone. When a parameter is adjusted in the veering

zone, the drastic changes in the vibration modes can greatly impact the operating

condition dynamic response, tooth loads, load sharing, and bearing forces and possibly

lead to mode localization. The degree to which individual modes are excited by dynamic

mesh forces (i.e., the modal forces) also changes dramatically as veering alters the

modes. If the coupling factors are all zero, ,_ and 2s loci cross; otherwise, veering occurs.
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Figure 4.6 (a) Natural frequencies versus the sun-planet mesh stiffness. Natural

frequencies are numbered under the nominal conditions (dashed line) in Table C. 1. Three

pairs of veering are loci 14 and 18, (12,13) and (16,17), and 1 1 and 15. (b) Coupling

factor X of o914and o918.These two loci exchange mode shapes from point A to C.

NASA/CR--2001-210939 51



4.5.2 Veering Patterns In Planetary Gears

When applied to planetary (or any epicyclic) gears, the coupling factors reduce to

particularly simple forms because of the unique structure of the vibration modes. In the

frequency plots of tuned planetary gears, loci of the same type (rotational, translation, and

planet modes) never cross each other but veer away when they come close. The modes of

different types can cross each other but never switch modes through veering. This special

veering pattern is analytically proved using the well-defined vibration mode properties

(Lin and Parker, 2000b). The general veering/crossing patterns are summarized in Table

4.1. This pattern is generally valid when stiffness or inertia parameters are varied.

The special veering patterns are helpful to trace the evolution of eigenvatue loci and

identify the effects of design parameters on planetary gear vibration. The planetary gear

in a helicopter powertrain is used as an example. The nominal model parameters are

given in Table C. 1, case II. Table 3.1 identifies the mode type and where the dominant

strain energy is in each mode. The natural frequencies are numbered at the nominal

conditions (indicated by the dashed lines in Figure 4.6-11).

R T P1 P2 P3

R V X X X X

T X V X X X

P1 X X --- X/V* X/V*

P2 X X X/V* --- V

P3 X X X/V* V ---

Table 4.1 Veering (V) and crossing (X) patterns in planetary gears. X/V means crossing

only occurs when k_p= krp and c_= t_.
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Figure 4.7 Natural frequencies versus the planet bearing stiffness k;. The planet mode 11

(pure tangential type P1) crosses the planet mode 15 (no tangential motion type P2). The

nominal conditions (dashed line) are listed in Table C. 1, case II.

Mesh stiffnesses ksp, k,.p (Figure 4.6and 4.8) have little influence on the low natural

frequencies co1_COlo. This is because these modes are governed by bearing stiffnesses

(Table 3.1) that are much smaller than the mesh stiffnesses. Modes 15-18 have large

strain energy in the sun-planet meshes and are affected by ksp (Figure 4.6); modes 11-14

have substantial strain energy in the ring-planet meshes and are affected by k,p (Figure

4.8). When ksp is reduced from the nominal value, the changing o)15_0)18 approach the

0)11_0.)14 loci. Because loci of the same type can not intersect, veering occurs between

rotational modes 18 and 14, translational mode pairs (16,17) and (12,13), and planet
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modes 15 and 11. Below the veering zones (ksj,<lO0 N/gtm), modes 11-14 are very

similar to modes 15-18 above the veering zones (ksp>800 N/lmO. In the same way, one

can predict the trend of frequency loci as k,7, is increased (Figure 4.8). Using the derived

veering patterns and modal properties, the actual modes affected by varying parameters

can be detected easily although the plots are complicated by veering phenomena.

Support stiffnesses kh, khu, h=c,r,s of the carrier, ring, and sun can vary over a wide

range depending on the configuration (fixing or floating these components). Rotational

and planet modes are independent of the transverse support stiffness kh because they have

no translation of the carrier, ring, and sun; only translational modes are affected by

changes in kh (Figure 4.9a,b). Considering the veering effects, kh significantly affects only

one pair of translational modes with dominant strain energy in the transverse supports.

When the rotational support stiffnesses kh,, are altered, similar results are obtained (Figure

4.9c,d), except it is the rotational modes that are susceptible to kh, variations.

Altering planet parameters affects most natural frequencies as all modes involve

planet deflections, in general. Applying the derived veering results, five pairs of veering

are identified for changing planet bearing stiffness in Figure 4.7: rotational modes 8 and

18, 4 and 14, translational modes (9,10) and (16,17), (6,7) and (12,13), and planet modes

5 and 15. For large stifthess kp>5000 N/ltm, eight natural frequencies increase rapidly to

outside the range of interest. Planet mass mp and moment of inertia Ip also have

significant influence on the natural frequencies (Figure 4.10).
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4.6 Discussion and Summary

Eigenvalue loci veering also occurs when degenerate modes of symmetric system

are separated by small disorders. In planetary gears, the cyclic symmetry can be broken

by differing mesh stiffnesses at each planet mesh, manufacturing variations, and

assembly errors. For cyclically symmetric or periodic systems with small disorders and

weak structural coupling, mode localization often accompanies eigenvalue loci veering

(Pierre, 1988). Planetary gears have relatively strong coupling between the planets

through the carrier and teeth meshes, so strong mode localization is unlikely even in the

presence of loci veering. After examination of many cases with various configurations

and parameters, the authors have not found a realistic example of mode localization in

planetary gears.

The special veering patterns of planetary gear eigenvalue loci are easily

summarized. Two approaching eigenvalue loci of the same type (rotational mode,

translational mode, and planet mode) veer away while two loci of different mode types

cross each other. The mode shapes are exchanged across the veering zone. In the veering

zone, the modes are strongly coupled and markedly different than outside the zone. One

can expect significant differences in response from these changed modes. These rules

result from planetary gears' unique modal properties and apply to all design parameters.

The effects of key design parameters are summarized below:
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1. Mesh stiffness, ksp and k w each control three different natural frequencies associated

with one rotational mode, one pair of translational modes, and one group of planet

modes. Dominant strain energy occurs in the tooth meshes of these vibration modes.

2. Carrier, ring, and sun parameters, kh and kh,, h=c,r,s each affect only one natural

frequency. The transverse stiffness kh controls one pairs of translational modes and the

torsional stiffness kh, controls one rotational mode. Floating or fixing the carrier, ring, or

sun has limited influence on planetary gear modal properties. The carrier, ring, and sun

masses and moments of inertia affect the same frequencies as their corresponding support

stiffness, though the frequencies vary in the opposite direction.

x 10 '_

6

i

18R

16,17T

102 10 3

km (N/l.lm)

Figure 4.8 Natural frequencies versus the ring-planet mesh stiffness krp. Loci 12-14 will

veer with loci 16-18 when k_p is further increased. The nominal conditions (dashed line)

are listed in Table C. 1, case II.
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3. Planet parameters. Planet bearing stiffness and planet inertia are the most influential

parameters and affect most natural frequencies. A stiff planet bearing can be beneficial

for resonance tuning because it substantially reduces the number of natural frequencies

in the lower frequency range that is commonly of most interest.
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Figure 4.9 (a), (b) kh, h=s,c only affect translational modes. (c), (d) kh,, h=s,c only affect
rotational modes. The nominal conditions (dashed line) are listed in Table C. 1.
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inertia Ip. The nominal conditions (dashed line) are listed in Table C. 1.
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CHAPTER 5

PARAMETRIC INSTABILITY FROM MESH STIFFNESS VARIATION

In previous chapters, the mesh stiffnesses are considered constant. Current work

investigates the impacts of mesh stiffness variation on planetary gear dynamics. The

variation of mesh stiffness gives rise to a parametric excitation. The linear, time-varying

system studied herein is governed by a set of coupled Hill's equation

M_ + [K 0 + K,, (t)]q = F(t) (5.1)

where K0 is the mean stiffness matrix and K,,(t) is the variational part of the stiffness

matrix. F(t) is the external excitation. K,,(t) is periodic with frequency .Q (mesh

frequency). Mesh stiffness depends on element compliance, tooth error, profile

modification, transmitted torque, and the position of contact (Kasuba and Evans, 1981).

When Kv(t) is simple harmonic in t, (5.1) becomes a set of coupled Mathieu equations.

The parametric excitation from K,,(t) causes instability and severe vibration when

harmonics of the excitation frequencies are close to particular combinations of the natural

frequencies. Three types of instability are of most interest: (1) primary instability .Q=2co:,

(2) secondary instability .c2=(o?, and (3) combination instability ..C2=o_+al_. The objective

of this study is to systematically determine the operating conditions leading to parametric
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instabilities in planetarygears. As discussed in Chapter 1, the existing analysis on

parametric instability is scarce, inconsistent, and incomplete for multi-mesh gears

systems. A simple two-stage gear chain is analyzed first, and then the analysis is

extended to planetary gears with multiple meshes. Perturbation methods are used in this

study to determine the boundaries separating the stable and unstable regions. Floquet

theory and numerical integration are used to validate the analytical findings. The effects

of contact ratios and mesh phasing on parametric instability are quantitatively identified.

The interaction of instability, tooth separation nonlinearity, and dynamic response is

discussed.

5.1 Two Stage Gear Systems

5.1.1 System Model

Two-stage gear trains have three-gear and four-gear configurations (Figure 5.1).

The gear bodies and intermediate shaft connecting gears 2 and 4 are assumed rigid. The

tooth meshes are modeled as linear springs with stiffnesses ktl, k_2. The anchored shaft is

flexible with torsional stiffness kLo. The gears have base radii ri, i=1,2,3,4. Only

rotational vibrations 81, _92, 03 are considered. The equivalent masses are ml = Ii/rl 2, m2 =

9

lyre-, and ms = vlJr32, where Ii are the moments of inertia of the gears and their

connected shafts, v=r4/r2 for four-gear trains, and v=l for three-gear chains. The

equivalent stiffnesses are ko = kLo/rl 2, kl = kL1, and k2 = v2kz2. The shaft/gear rotations are

measured by the base radius deflections xl = Olrt, x2 = 02r2, and x3 = O_rJv. The system

stability is governed by the free vibration equation
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Figure 5.1 Two-stage gear systems with (a) four gears and (b) three gears, kLt, kL2

denote mesh stiffnesses and Z 2, Z 4 are numbers of gear teeth, kLO is the torsional

stiffness of the anchored shaft.

Mi_ +[K 0 + K,.(t)]q = 0 (5.2)

where q = [x_, x 2, x 3IT. M=diag(ml, n12, m3) is the inertia matrix. The stiffness matrix is

represented by a mean value K0 and a variational part K,,(t) as

k g I "_- k 0 k g 1 0 [ kvm kvl 0

K0= kg 1 kg,+kg 2 k_2 K,,(t)=lk,, 1 k,,, +k,. 2 k, z (5.3)

0 kg 2 kg 2 L0 k,.2 k,,2

where kgi and kv/t) are the mean and time-varying components of the mesh stiffnesses,

k/t) = k_, + k,_(t) (Figure 5.2). The variational parts k,,/t) are periodic at the mesh

frequency .Qi and expressed in Fourier series as
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_" (a _) sin s_it + b_11cossf2J), i 1, 2 (5.4)k,., (t) = 2k,, z..,. , =
/=1

where 2koi is the peak-to-peak amplitude of k,,i (Figure 5.2). The mesh frequencies -(2/and

are related by .Q1=R.(2:, where R=_/Z4 and Z2, Z4 are the numbers of teeth on gears 2

and 4 (Figure 5.1a). Note R=I, .O1=.O2 for three-gear systems (Figure 5.1b). Mesh

stiffness variation is obtained through measurement, calculation, or simple specification

(e.g., sinusoidal or rectangular wave). For spur gears, rectangular waves are often used to

approximate the mesh stiffness alternating between n and n+l pairs of teeth in contact

(Kahraman and Blankenship, 1999a). In this study, the k,,, are specified as rectangular

waves with variational amplitudes k,,i, periods T, =.(2/2_ contact ratios ci, and phasing

angles piTi (Figure 5.2b). Thus,

a_ I) =-2sin[Ire(c,-2p,)]sin(lxc,), b_,)_ 2 cos[la'(c,-2p,)]sin(lTrc,) (5.5)
lrc Ix

in (5.4) for I = 1, 2,.... Without loss of generality, one can specify pl=O, p2=h (h is

called mesh phasing). In practice, the first three or four Fourier terms reasonably

approximate the mesh stiffness variation.

For the time-invariant case, the eigenvalue problem associated with (5.1) is

K00 , = (o_M0,. The vibration modes ¢_ are normalized as OTM_=I with _=[01, 02, 03].

Applying the modal transformation q = _u and using (5.4), equation (5.2) becomes

ii,, + O)_bt, + _£[2£l(O(nlr ) sin A"21t + E':r' coslfa,t)
_=l 1=1 (5.6)

+ 2e., (F,_) • _,_smlf_zt +G,r coslf2zt)]u _ = 0. n = 1,2,3

where e, = k_ /kg,, i = 1, 2 and the matrices D, E, F, G are
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Figure 5.2 Modeling of mesh stiffnesses k i (t)= kg, + kvi (t). ci are contact ratios, kgi are

average mesh stiffnesses, and p,Ti are phasing angles.
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Equation (5.6) is a set of coupled Hill's equations subjected to

parametric excitations from two gear meshes.

(5.7)

multi-frequency
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5.1.2 Conditions of Parametric Instability

Parametric instability depends on the frequency, amplitude, and shape of the

parametric excitations. In gear systems, these factors are directly associated with the

operating speed and gear design parameters such as contact ratio, facewidth, diametral

pitch, pressure angle, material properties, and so on. The corresponding model

parameters are the stiffness variation amplitudes kol, k_:, mesh frequencies .(21, -Q2,

contact ratios cl, c2, and mesh phasing h.

The variation amplitudes k_i are assumed small compared to the average mesh

stiffnesses kg,, so ei= k_/kgi <<1 in (5.6). At this point, el=_=e is specified; the case of

et___ is discussed later. Using the method of multiple scales, three different mesh

conditions are examined.

1. Three-gear Systems: Equal Mesh Stiffness Variations

In three-gear systems (Figure 5.1b), the two meshes have the same mesh

frequencies f_l = f22 = f2. We consider the case where the gear facewidths and material

properties, which primarily determine mesh stiffness for a given number of teeth in

contact, are such that the amplitudes of mesh stiffness variation are the same at the two

meshes (e 1 = e 2 = g ). The contact ratios and mesh phasing are allowed to differ between

the two meshes, however. In practice, the contact ratios are changed using center

distance, diametral pitch, pressure angle, tooth addendum, and other parameters. The

mesh phasing depends on the layout of the gears and the numbers of teeth.
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The parametric instability when sO is close to rOp+C_oqis considered. Let

1_ =co r + o41 + o'e, where 6 is a detuning parameter. Using multiple scale method in

(5.6), the boundaries of the instability regions are (Lin and Parker, 2000c)

l(rop _ /-577 ,,) _ 1 [(O_ I + FCtl)2 ,,._,_ _,)_2 = +o9, +e_/l, m) _m p,t +tom +G m)2] (5.8)
S %0) q

For single mode instabilities (p--q), equation (5.8) becomes

2(.Op+ E [(Otl) (t) 2 +(E_O +GO).I211/2 I=1,2, (5.9)
=--/--_T ]L. ..+F;;) .p iv. , ...

As an example, Figure 5.3 shows the boundaries for primary (l=1), secondary

(1=2), and combination (pxt/, !=1) instabilities. The parameters are given in Table 5.1 and

cl = c: = 1.5, h = 0. Floquet theory, numerical integration to compute the fundamental

matrix, and the fundamental matrix eigenvalues (Nayfeh and Mook, 1979) are used to

determine the actual instability regions denoted by * in the figures. The first-order

approximations from (5.8) agree well with the numerical solution, even when e is not

small. In Figure 5.3, the instability region around .(2_-.2o_ is much larger than that of the

primary instabilities around 2col and 2oL,_. This is explained by examining the vibration

modes. From (5.8), the primary instability boundary slopes are governed by A_e° p .

Expansion of D, E, F, G in (5.7) yields the diagonal terms

O_p) =kg,(_p,. +02p) u, . F_.p =kg2(O:p+r3. . (5.1o)
(I) 2 O)

E_ = k.,(O,_+ O2.)_b_'_, 6.. = k._(O_.+03.) 62
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where 01p, _.p, 03p are the gear rotations in mode 0p. Let d#,=0,p+@r =x/+x: be the

relative deflection of the first mesh in mode 0p. Similarly, fi,_p=__p+03p =x2+x3 represents

the modal deflection in the second mesh. For the primary instability boundary around

2oq,, insertion of(5.10) into (5.8) yields

A'pl)v =[(kg,81_'pa_ ') +kg28,Zpa_") 2 +(kg,_(pb(l) +kg2_2pb_'))2]/0)_, (5.11)

The mesh deflections 61, _ in each mode can be observed from the mode shapes (Figure

5.4). The two meshes in 01 are both in phase and have smaller fij, 62_than those of 03.

where the two meshes are both out of phase. Thus, A_ > A(]_ and the instability

boundaries around 20)s have larger slope than those around 2o)1. Mode _ has one mesh in

phase and the other out of phase, so the size of its primary instability regions is between

- --(1) A(I)that of 01 and Os (A33) 22 > A(]_). In addition, the mesh deflections in a vibration mode

are related to the modal strain energy U 1 = k18 (/2, U 2 = k_,fi_/2. Examination of (5.1 1)

shows that vibration modes with more strain energy in the meshes have larger instability

regions and are more susceptible to parametric excitations. The above results apply for

mesh stiffness variations of arbitrary shape.

For mesh stiffnesses having rectangular waveforms, one can clearly identify the

effects of contact ratios and mesh phasing on the instability regions. Use of (5.5) in (5.11)

yields

A(_)p= 2 4 • "_ "_ 4[kglSip sin-(qx) + k_,28_p sin g (c2n') +

2kglkg28(n8_v sin(clx ) sin(c2n" ) cos(q -
2 (5.12)

c2 + 2h)x](--)"
/_'(.0p
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Inertia m1=l, m:=0.3, m3=4.0

Average mesh stiffness kgl = kg.,= 1

Shaft stiffness ko=0.5

Contact ratio 1< cl, c2 < 2

Mesh phasing pl=O, 0 < p2=h< 1

Variational amplitude O< k,a, k,,: < 0.5

Table 5.1 Parameters of an example system in Figure 5.2.
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c=k/k

a g

Figure 5.3 Instabilities regions when KZ_= -.Q2= fZ, e_ = e 2 = e ; b analytical solution;

*** numerical solution. The parameters are from Table 5.1 and c_ = c 2 = 1.5, h = O.
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_)= 0 is obtainedwhensinqx = sinc_:r= 0 andtheunstableregionThe minimum value A pp

vanishes. This is achieved for integer contact ratios cl, c: where the number of tooth pairs in

contact remains constant and mesh stiffnesses are time-invariant. For given, non-integer c:,

.. (1)between 1 and *, App is minimized by setting cos(c_ -c z + 2h)x = -1 or ca -c 2 + 2h = +_1,3.

By properly choosing the contact ratios and mesh phasing, the parametric instability regions can

be dramatically reduced. Figure 5.5 compares the instability regions for three cases. The most

severe condition for primary instabilities (dash-dot lines) is c I = c2 = 1.5 and h = 0, which

maximizes At_)p in (5.12). This condition is markedly improved by changing the phasing h = 0.5

so that c I -c z + 2h = 1 (dashed lines). When the contact ratios are close to integers (solid lines,

c I = 1.1, c2 = 1.9, h = 0.4 ), the primary instability region becomes even smaller.

Similar conditions are obtained for secondary and combination instabilities (Lin

and Parker, 2000c). Unfortunately, the primary, secondary, and combination instability

regions cannot be minimized at the same time. The conditions reducing the primary

instability regions (dashed lines, Figure 5.5) result in large combination instability

regions, and vice versa (dash-dot lines). Depending on specific applications, a trade-off

may be made to reduce multiple instability regions, though none are true minima (solid

lines). Adjusting contact ratios and mesh phasing is clearly an effective means to

minimize instability regions and avoid resonances under operating conditions.

2. Four-gear Systems." Equal Mesh Stiffness Variations

Two-stage countershaft systems (Figure 5. l a) have two different mesh frequencies .QI=R.Q2,

which means more instability regions than three-gear systems. We consider the case where the

NASA/CR--2001-210939 68



gearfacewidthandmaterialaresuchthatthemeshstiffnessamplitudesareidenticalatthetwo

meshes(el=e:=e),althoughthecontactratiosandphasingarenotrestricted.Dependingon the

ratio R=Z,/Z4, the parametric instability regions associated with -01 and -Q, may overlap each

other. For R = m/j (m, j are integers), the l=j instabilities (single mode and combination) of -01

and the l=m instabilities of -Q: occur simultaneously. Because their instability regions are

typically the largest, the interactions involving either m orj=l are of most interest.

qbl (6o1=0.237)

"" •

Figure 5.4 Vibration modes for the time-invariant system with parameters in Table 5.1.
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Figure 5.5 Comparison of instability regions for various contact ratios and mesh phasing.

The parameters are in Table 5.1. --- c_ = c2 = 1.5, h = 0.5 ;--c1 = 1.1, c 2 = 1.9, h = 0.4; -

.... c l =c 2=1.5, h=0.

When R # m, 1/m for integer m, the l=1 instabilities from one mesh decouple from

the l=m instabilities of the other mesh. In this case, instability occurs when l-(21 or 1122 is

close to a},+ o)q, but these instability boundaries can be calculated independently. For 1.01

= o.},+ oJq+eo'_, the condition separating bounded and unbounded solutions is

2Ckgl_lp_lq
_1 (-/)I' + O.)q "q- sin(/cl:t')

= 1 - l":C _-_p_

2ek g,82 p4 u
_, _P + % + - sin(lc, rc)

" = I - 12rc _x/-_p__ "

(5.13)
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The stability regions associated with each mesh frequency depend on the individual

contact ratios but are independent of mesh phasing as the two mesh excitations are

uncoupled. For primary and combination instabilities (1--I), maximum regions occur

when c_ = cz = 1.5 and minimum regions require c I = c__= {1, 2}. For secondary

instabilities (I=2), the maximum and minimum conditions are c I = c 2 = {1.25, 1.75} and

c I = c 2 = {1, 1.5, 2}, respectively. Figure 5.6a shows the instability regions for R=3/5.

The primary instability associated with .Q2=20)3+£Cr2 occurs at -O1 =R&22=R(2a_+e_) in

Figure 5.6a.

When R -- m or 1/m for integer m, the parametric excitations from the two meshes

interact. Consider the case with R=l/m, where the l=m instabilities caused by -O1 overlap

with the primary instabilities caused by $22. Considering instability of the p-th mode

where .(2: =2m:,/m+e_l and .Q__=m.C2j=2o_+mecyj, the boundaries have

0.I =[(D_,,)+ F_tp))2+ ,,,,) c')2 v2(Epp +Gpv ) ] /(mop) (5.14)

For example, when .(2_,=2.Oj (R=1/2), the boundaries for £21 secondary instabilities

(overlapping with _ primary instabilities) are

f_, = o)? +--_e [(O (2) + F¢_)) 2 +(E (2) + G_p_))2]1/2 (5.15)
-- 2gOp L. pp pp

Figure 5.6b shows instability regions in the (.(2l, e) plane for R=1/2. Note the instability

at £21--(o3 couples with the instability at X2_,=2a_, and the combined instability region is

much larger than the case without interaction (Figure 5.6a). Using (5.5) and (5.10) in

(5.1 5), the slopes of these boundaries are
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2 4 • "_ "_ 4 •
or, = [k_ldlr sin" (2CLX) + kg282, , sin" @fir)

(5.16)
+ 2kglkg,_812p_2p sin(2cla- ) sin@jr) cos(2c I - c__+ 2h)rc] v-' / con

Minimization of o'1 requires c1={1, 1.5,2} and c2={1, 2} for 1<c_.2<2. The

instability region can also be reduced by adjusting the phasing h according to

cos(2c_ - c, + 2h)x = +1 with sign the same as sin(2clx). The primary instability regions

under -01 (1=1) do not coincide with any other instability regions. Other overlap situations

are possible, such as the _ secondary instability (l=2) overlaps with the .621 fourth

instability (1=4), but the interaction between these higher instabilities is typically weak

and the instablity regions are much smaller. Combination instabilities can be analyzed

similarly.

3. Three and Four-gear Systems: Unequal Mesh Stiffness Variations

This general case allows all parameters of the two mesh stiffnesses to differ. In

contrast with prior cases, the gears may have differing facewidths and material properties

such that the amplitudes of stiffness variation at each mesh vary independently (_1¢-e2).

The contact ratios and mesh phasing are unrestricted. The design of one mesh must

account for dynamic interactions with the mesh stiffness variation of the other.

When R ;_ m, 1/m for integer m, there is no interaction between the parametric excitations

from the two meshes. The .O1 instabilities are only affected by el and the _ instabilities

are only affected by _.

When R = m or 1/m for integer m, a mode may be simultaneously driven to

instability by both mesh excitations. In this case, the first mesh instability regions can be

significantly affected by the presence of _ and vice versa. Closed-form boundaries of the
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form (for primary instability) -0/ = 2o9t,+c_o'1+_ for independently varying e_, & are

cumbersome. Alternatively, simple yet accurate approximations for the instability

boundaries are obtained by presuming a linear variation of the boundaries in the (-01, &)

plane for given &. To construct this linear approximation, one point is calculated under

the condition e I = 0,e 2 = C and a second point is obtained at _'1 = e, = C. The primary

stability boundary limits for e I = O,e 2 = C are

-k- C (1))2 (1) 2 1/2
= +(Gpp) ]f21 2cop _ -- [(Fp_ (5.17)

From (5.9), the stability boundary limits for e 1 = C,e 2 = C are

_21 = 20ap + C'ff-f(D°)t..pp q-Fpp ) +(l)2 .(E(l)_pp -4- Gpp(1))211/2 (5.18)
COp

An example is for the primary instability when R=I, C=0.3. Connecting the two

points obtained from (5.17) and (5.18) yields the instability boundaries, which agree well

with the numerical solution (Figure 5.7a). Assembling the (-01, el) planes for various _=C

generates three-dimensional plots of-O1 versus el, _ (Figure 5.7b). The parametric

excitation in the second mesh dramatically changes the shapes of the instability regions.

Notice that the second parametric excitation widens the primary instability region for

small el compared to mono-frequency excitation (Figure 5.3). In contrast, the

combination instability at -01=a__ +093 disappears near e1=0.23 in Figure 5.7a. In other

words, an otherwise unstable system is stabilized by the presence of a second parametric

excitation. The solid line in Figure 5.7b indicates poinis where the a_ +oa3 combination

instability vanishes.
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Figure 5.6 Instabilities regions when f_l = RE22, el =e 2 = e. (a) R=3/5, (b) R=l/2. The

parameters are in Table 5.1 and c_ = c 2 = 1.5, h = 0. *** denotes numerical solutions.
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and the solid line indicates vanishing of the combination instability. The parameters are

in Table 5.1 and c_ = c2 = 1.5, h = 0.
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5.1.3 An Example

The two-stage gear system (Figure 5. l a) studied by Tordion and Gauvin (1977) and

Benton and Seireg (1980b) is used as an example. These two papers come to markedly

different conclusions as discussed below. The system parameters are given in Table 5.1

and c1 = 1.47, c 2 = 1.57. In keeping with the published work, the double-tooth contact

mesh stiffness kmo_=l is kept constant, and the average mesh stiffnesses kgi decrease as kai

is increased (Figure 5.2b).

Tordion and Gauvin assumed that k,,l and k,.2 have the same amplitude and

frequency but different contact ratios and phasing. They applied an infinite determinant

method (Bolotin, 1964) to plot the boundaries of primary and secondary instabilities

(dashed lines in Figure 5.8). Their results deviate significantly from the numerical

solution as a result of analytical errors. In addition, the Fourier expansion they derived for

rectangular waveforms (equations (11) and (12) in Tordion and Gauvin, 1977) is

incorrect. Nevertheless, they conclude that "The phase displacement between the

meshing stiffi_esses has a great influence on the width of the instability regions."

Benton and Seireg (1980b) considered the same system. They decoupled the

equations using the modal transformation and neglected the off-diagonal terms of the

transformed time-varying stiffness matrix (that is, TKv(t)_ ). These treatments reduce

(5.6) to three uncoupled Mathieu equations. The average value of two contact ratios was

used to make the stiffness variations kvl and /q,2 identical. With these approximations,

they conclude that the instability regions are independent of the mesh phasing, that is,

"the normal mode technique ... without considering the phase variations ... provide(s) a
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relatively simple means of predicting the instability regions with sufficient accuracy for

practical purposes." This conflicts directly with Tordion and Gauvin. In fact, the mode

uncoupling method does not provide satisfactory results when the mesh phasing is non-

zero (Figure 5.8b).

The perturbation results resolve the discrepancy: Mesh phasing strongly impacts the

mesh stiffness variation instabilities. The excellent agreement of analytical and numerical

stability boundaries confirms this finding (Figures 5.3-5.8).

To further validate the stability conditions, free responses under non-trivial initial

conditions are calculated numerically (Figure 5.9) for the parameters at point ,4 of Figure

5.8 (.(2 = 4.2, ka=e-'-0.3). For point A in Figure 5.8a, the responses are unstable (Figure

5.9a), as identified by perturbation and numerical methods. This point, however, is stable

according to Tordion and Gauvin (Figure 5.8a). When the phasing h---0.4 at point A

(Figure 5.8b), stable responses occur (Figure 5.9b). This is consistent with the

perturbation and numerical solutions but conflicts with both Tordion and Gauvin's and

Benton and Seireg's results.

5.1.4 Discussion

Rectangular waveforms are close approximations of the mesh stiffness in spur gears

with involute teeth. For helical gears or spur gears with tooth modification, mesh stiffness

deviates from the rectangular shape. Equation (5.5) is not valid for other functions, but

the general Fourier expansion (5.6) can still be used in matrices D, E, F, G to determine

the instability boundaries.
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If damping is considered, the system stability improves and the instability regions

shift to the right in the (-62, e) plane. Furthermore, damping and non-linearity (e.g., tooth

separation) must be considered to determine the limit cycle amplitude of the dynamic

response when operating conditions cause instability.

The instability analysis can be reduced to single mesh gears with one natural

frequency co,. From (5.9), primary and secondary instabilities vanish as the contact ratio

c1={1,2} and c_={l, 1.5, 2}, respectively. Maximum primary and secondary instability

Occurs at c1=1.5 and c1={1.25, 1.75}, respectively. Kahraman and Blankenship (1999)

experimentally studied a pair of spur gears under mesh stiffness excitation for various

contact ratios. They showed that the amplitude `41 in the first mesh frequency harmonic of

the response is minimized when the contact ratio c1={1.0, 2.0}. This is because

parametric excitations are eliminated for integer contact ratios. When the mesh frequency

.O=r_.o,, their measured A1 reaches maximum for C1_-1.4. A possible explanation for the

high .41 at this contact ratio is due to the combined effects of primary and secondary

instabilities. First, for both primary instability excited by the first harmonic of k(t) and

secondary instability excited by the second harmonic of k(t), the dominant response

frequency is ca,. We now examine the contact ratios where both instabilities are active.

Although the maximum primary instability region occurs at C1=1.5, the secondary

instability region is eliminated there. For c1=1.25, the secondary instability region is

maximal but the primary instability region is small. For cl=l. 4 (average of 1.25 and 1.5)

or 1.6 (average of 1.75 and 1.5), however, both primary and secondary instabilities have

significant instability regions. Generally, the larger an instability region, the higher

NASA/CR--2001-210939 78



response amplitude occurs due to this instability (to see this heuristically, note that both

the slope of the stability boundaries in (17) and excitation of first order response in (10)

are proportional to the same quantities D, E, F, and G). Accordingly, for ci=l.4 and 1.6,

both instabilities induce large response and jointly contribute to large AI. When the mesh

frequency .Q---2a_ (not shown in Kahraman and Blankenship, 1999), the instability is

caused only by primary instability excited by the first harmonic of k(t). Because the

primary instability region is maximal at c1=1.5, the response amplitude A1 around .Q=2ak

also becomes maximal. Therefore, from the viewpoint of dynamic instability and

amplitude, contact ratios in the range 1.4-1.6 are harmful to single-mesh gears at high

speeds.

5.2 Planetary Gear Parametric Instability

Planetary gears have multiple time-varying mesh stiffnesses and their parametric

instability has not been analytically investigated. In planetary gears, parametric

excitations are complicated as different contact ratios and phasing conditions exist

between the sun-planet and the ring-planet meshes. The objective of this study is to

analyze parametric instability excited by different time-varying mesh stiffnesses in

planetary gears. The perturbation method used for two-stage gears is extended to

planetary gears that have degenerate vibration modes due to their cyclic symmetry. The

well-defined modal properties of planetary gears are used to derive simple expressions

for instability boundaries separating the stable and unstable regions. From these

expressions, the effects of contact ratios and mesh phasing are analytically determined to
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Figure 5.8 Comparison of instability regions. The parameters are from Table 5.1,

c_ = 1.47, c2 =1.57, and phasing (a) h=O, (b) h=0.4. -- Perturbation method; ***

Numerical method; --- Tordion and Gauvin (1977); ..... Benton and Seireg (1980b).

NASA/CR--2001-210939 80



(a)

0 110 J i i20 30 40 50 60 70 8o

2oooj , , !

'°=r . tit'S!!_,_ I
-2000 L t _ l

0 10 20 30 40 50 60 70 80

t I I J0 1 20 30 40 50 60 70 80

t (sec)

(b)

0.2 , , r i

-0.2 _ , _ i
0 20 40 60 80 1O0

0.5 ....

O5
0 20 40 60 80 1O0

0.2 /
/

-0.2_ 20 40 6'0 80 100

t (sec)

Figure 5.9 Free responses for [2 = 4.2, k,,=e=0.3 (point A in Figure 5.8) and the

parameters of (a) Figure 5.8a and (b) Figure 5.8b. The initial conditions are

X1 =X 2 :X 3 =0.1, :_l _-'_X2=X3 _---0.
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provide insight into planetary gear design. In practice, planet mesh-phasing schemes are

often applied to cancel or neutralize resonant response at speeds where the mesh

frequency is near a natural frequency (Seager, 1975; Kahraman, 1994b; Kahraman and

Blankenship, 1994; Parker, 2000). In this same spirit, this study shows that particular

parametric instabilities can be eliminated under certain phasing conditions that can be

achieved by proper selection of design parameters. Tooth separation nonlinearity induced

by parametric instability is numerically simulated.

5.2.1 System Model and Mode Properties

The planetary gear dynamic model used is based on the one developed in Chapter 2

(Figure 2.2). Translational degrees of freedom in that model are eliminated, and only

rotational motions of the gear bodies are considered. The sun-planet and ring-planet tooth

meshes are modeled as linear springs with time-varying stiffnesses ks,(t), k,,(t), n=l .... N.

The system equations of motion are

K(t) =

M/i + K(t)q = V (5.19)

M:diag[I./,_ +Zmp, I./rf, I,/rf, Ip/r_, ..., Ip/rZp]

_ k,_ 0 - krl

k_, ks_

krl + k_l

symmetric

... k _u - k_u-

.... krN

•.. k st¢

0 ... 0

"*. 0

k ru + k_u

(5.20)
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q=[U,.,U,,U_,Uv...,UN_ , r=[T_/rc, T,./,;., T_/r_, 0,...,0_

where the summation index n ranges from 1 to N. In the stiffness matrix K(0, each mesh

stiffness is represented by k.,(t) = k,v + kL,,(t), k.,(t) = k,7, + k2,,(t), n=l .... N, where ksp,

k,-p are mean values and k/., k2. are time-varying components of the n-th sun-planet and

ring-planet meshes. For spur gears, rectangular waves are often used to approximate

mesh stiffnesses alternating between d and d+l pairs of teeth in contact. Figure 5.10

shows the mesh stiffness variations kin, k2n with peak-to-peak amplitudes 2k,,s, 2kvr,

contact ratios G, Cr, and phasing angles _,,T, (24_+?'r.)T. The sun-planet and ring-planet

meshes have the identical mesh frequency .Q=2zc./T. The sun-planet mesh stiffnesses

between planets differ only by a time transition (or phase angle), and likewise for the

ring-planet meshes. Mesh phasing in planetary gears is determined by planet position

angles q/. and the numbers of teeth .._, -'r, "p for the sun, ring, and planets (Kahraman and

Blankenship, 1994). _.= _.:_/(2rc) denotes the mesh phasing between the first and n-th

sun-planet meshes (7_1=0); 24_= q/.zr/(2rc) is the mesh phasing between the first and n-th

ring-planet meshes (241=0); _r=:p/2 is the mesh phasing between the sun-planet and ring-

planet meshes for each planet. Note _r=0 for even :p and _.=1/2 for odd zp. Expansion of

kl., k2. in Fourier series yields

kl, , (t)= 2k,,_ _ (a_t.) sin lf_t + b_,° cos lf2t),

i=1 (5.21)

k2.(t ) = 2kvr _ (a_) sinlOt + b_t,) cos lot)
/=l
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a"ts,, -- ---2 sin[lrc(c, - 2L, ,)] sin(lxc s ),
/_"

bl,'? 2= ---cos[/cr(C , - 2 Ys,,)] sin(/lrc_. ),
llr

2
al/,' =---sin[l_r(c,.- 2y_,- 2y,,,)] sin(lzrc,. )

1_-

2
b_ ) = - -- cos [lrc(c,. - 2 L,. - 2 y,,, )] sin(l,'rc ,.)

Ire

Mesh stiffnesses depend on many parameters including the number of teeth in contact,

gear facewidth, material properties, profile modifications, and applied load (Kasuba and

Evans, 1981). Let e I = k,.,/ksp and e, = k,,/k,7 , be the relative amplitudes of mesh

stiffness variation. In the simplest approximation, mesh stiffnesses are assumed

proportional to the number of tooth pairs in contact, that is, ksp=C+ kh, krp=Cr k2t and k,._.=

kl,/2, k,.,.= _t/2, where kit, k2t are one-pair tooth bending stiffnesses of the sun-planet and

ring-planet meshes. With this simplifying assumption, the nominal amplitudes of stiffness

variations are el=l/(2cJ, _=1/(2c,.), and one obtains the explicit relation _=el Cs/c,.. In

practice and in the analysis that follows, however, _'1 and _ are not constrained to these

"'nominal" values but vary independently of the contact ratios to account for the many

factors influencing mesh stiffness variation amplitudes. For this modeling, we let

_'l=e2/g=e where g=O(1) (and g=cs/cr under the simplifying assumption noted above).

Substitution of (5.4) and (5.21) into (5.20) yields

K(t)= K 0 + 2e_'_ (K(,,ll) sin If2t + K(.I_ cos lf_t) (5.22)
I=1

where the average stiffness matrix K0 has the same form as (5.20) with ks,,, k,-, substituted

by k_p, kw. The Fourier coefficient matrices are also in the form (5.20) with ks,, k,_

_(i) _1. _(_) _(t) k h (_) -'- _") for i_ (I)substituted by kspus. , tg^,.pttrn for and substituted by _sp_, , g^_,v,_ -=,.2

For the time-invariant case, the eigenvalue problem associated with (5.19) is
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K0O ' = co2M_, (5.23)

The natural frequencies and vibration modes have unique properties (3.7), (3.14), (3.20).

We specialize these properties for the case of a rotational vibration model with fixed ring

and L=N+2 degrees of freedom. In this case, all vibration modes can be classified into

one of three categories: (1) a rigid body mode (col =0), (2) two modes with distinct natural

frequencies (a__, coL), and (3) a group of degenerate modes with multiplicity N-1

(0)3----...----OJ_,-1). In the distinct modes, all planets have identical motion

u, = Ul, n=1,2 ..... N (5.24)

In the degenerate modes, the carrier, ring, and sun have no motion, and the planet

rotations satisfy

u,, = [u I sin(IF2 - _,,) + u2 sin _,]/sin_2, n=1,2 ..... N (5.25)

These well-defined properties are valid not only for equally spaced planets with position

angles g/, =2_n-1)/N, but also for diametrically opposed planets with _,--N: =g/,, +rr.

5.2.2General Expression for Instability Boundaries

We determine the operating conditions (that is, mesh frequency .(2 and stiffness variation

amplitude e) that lead to instability when l.(2--coa+co q for integer 1. The rigid body mode

(col=0) is not excited under operating conditions, and does not affect the instabilities of

other modes. Only the two distinct modes and the group of degenerate modes are

considered in what follows. The parametric instability when l.(2 is close to ab+co q is

considered. Let lf_ = COp+ COq -_ _¢'O', where ty is a detuning parameter to be determined.

From (5.8), when copand coqare both distinct, the instability boundaries are
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Figure 5.10 Modeling of mesh stiffness variations in the sun-planet and ring-planet

meshes, cs, cr are contact ratios, and _,, 7,-,, 7_rare mesh phasing.

2co _4- £ (_)-- -- A

single mode instability: f2 I lcop

combination instability: _ = cop + coq + _ _/Aml_l/(copcoq )I -7

(5.26)

(5.27)

where A(_ =(D_) 2 + (E_)) 2 .

When COpor coq are degenerate, the complexity of instability solutions depends on

the multiplicity of the degenerate natural frequencies. We first study the case with

multiplicity two, say r_op=a_. The single-mode instability boundaries for cop=coq are (Lin

and Parker, 2000d)
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f2 = 2m,......._,+ g__e__[-Fi,) ,

1 leov

F(1) (I)D(1) ¢I) _l) L[(D(I).I2 (D(_),- (E(I_) 2 +(E"_) 21 (5.28)
=Dm ,u, +Em E,,, + 2 L. t,t,. + +x qq., ., pp J ,, qq., a

When (_Op=mq are degenerate but _ is distinct, the combination instability is

f2 = COp+ co,. + £ ")D °) + Dq,. ,.q +
1 ---I [(Dp,. rv °)D"' Ep,.(I)Eq)(I)-.FE_l.)E_))/(O)pO.)r)] 1/2 (5.29)

When the degenerate natural frequencies o93= ... =co,, +2 have multiplicity m > 2, the

critical cr is obtained by requiring the real parts of the eigenvalues of the following matrix

to be non-positive,

E(/) ][_(l) . (O.(.03)| m×ml

,,,b _,,b (5.30)

+(aro3)Lx., St_b

where n(_) _,(o ...,_,,,b, _,,,b are mxm submatrices of D a), E _) including rows and columns 3,

m+2. Generally, no closed-form solution can be derived for these single-mode

instabilities, but numerical evaluation can determine cr and the instability boundaries

unless r_(o _'(_) have special features (e.g., diagonal matrices) as discussed later. More
_ sub ' _ $1lb

is possible for combination instabilities. For combination instability of distinct (.or and

degenerate o)3=... =o_+2, the instability boundaries are

m+2

__ (-03+ O),, + 8__'_./(DO)DU) O) O) / (_0
l - / _z_=3v" q_ 'u + Eq, E,v ) (co_ 3) (5.31)

The above expressions apply for a general system with degenerate natural

frequencies. These results reduce to simple forms when specialized to planetary gears.
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5.2.3. Planetary Gear Parametric Instability

Planetary gears' well-defined modal properties are now used to simplify the above

instability conditions to compact expressions suitable for use in applications. Mesh

stiffness are approximated by rectangular waveforms (5.21). Expansion of D cl), E el)gives

N N

_(I) s_(p)_(q) k _'_ _(l)_(p)._(q)D_] = vp_TK<')_,,,",-q= k:p_".:,, c,+,, t,:,, + ,.pgZ t,,,, c,,,, c,,,,
t_'=I n=[

(5.32)
N N

E_) _7K<[) _ <+) cp) (q>•rp ,.2Vq k:p_'b:,, 6_,, g_,, • " x--,,_(,)_.<p)z(q)= = + K,pg.2o., o,., o,,,
t_=l 7q=l

where 8_,,p) = u s - u, + u,, is the deformation of the n-th sun-planet mesh in mode _ and

8_ ) = -u c -u,, is the deformation of the n-th ring-planet mesh. For different spacing and

phasing of planets, matrices D a), E a) have special features that simplify the instability

conditions.

1. Equally spaced planets

For equally spaced planets (¢/,, =2a'(n-1)/N), the vibration modes have structured

properties (5.24) and (5.25). In this case, (:s+zr)/N = integer and the planet meshes have

phasing gs,=(n-1):_/N and ?'_,=(n-1)zr/N, n=l ..... N. The two possible phasing conditions

are examined below.

(1) In-phase Planet Meshes

Consider the case when all the sun-planet meshes are in-phase (y_,=O, n=l ..... N)

and all the ring-planet meshes are in-phase (y,_=O, n=l ..... N). This design is typical when

optimizing load sharing and results when zs and zr are each integer multiples of N.

However, there is a constant phasing _r=O (even Zp) or 1/2 (odd zp) between the sun-
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a(Z) _(:) l.lz) b(Z)planet and ring-planet meshes for each planet. The Fourier coefficients .,.,,,%, ,u_,,. ,,

in (5.21) are independent of the planet index n.

For a distinct natural frequency (q,, vibration mode property (5.24) leads to

d_,,m =8_( ) , 8_f ) =8}f ) for any planet n. Using (5.21) and (5.32) on (5.26), the primary

instability boundaries have

A(1)p= (2N )2[(8,!_Pl)4 (k._FsinZCs)2 + (8_())4 (k,.pgsin.r'w,. )2 +
z (5.33)

2 kspk_,g(8_lP)d_f)) 2sin(_s)sin(zc,.)cosz(c _ -c r + 27,)]

Obviously, A_ = 0 when G, Cr are integers and all instabilities vanish. If c_, cr x integer, a

second choice to reduce the instability regions is to set the third term in (5.33) to be

negative by adjusting c_, Cr, and g r. From (5.27), the combination instability boundaries

for two distinct modes have

A(_ 2N 2 (p) (q) • 2 _(P) S:(q)= (--) [(kspd_] _l sm]r-'Cs) -_- (krpl_Url Url Sin_r) 2 _-

z (5.34)

2 k_k,_gd_f)8_f)8_f'8_f )sin(_cs)sin(Zer)cosz(c_-e_ + 2 _'_,.)]

Inertias (kg) L /r_2=6, 1s/rs2=2.5, lp/rp2=2

Planet mass (kg) rap=4

Mesh stiffness (N/m) ksp= kw=lO 8

Natural frequencies co,=O, o92_=1.212,

(kHz) (o3=co4=1.592, o)5=2.196

Table 5.2 Parameters and natural frequencies of an example planetary gear with fixed

ring and three planets.
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For the degenerate natural frequencies 093=... =o_,_1, the single-mode instability

boundaries are the same as (5.28) with

1-,1i) _1) 2 (1) 2 9___A_ )2 ,= + (Epp) = sin l,.-ccs +
(O,,p) ( )-[(k,p (k'7'gsinlxc')" + (5.35)

2kspk,r,g sin(lxc ) sin(lxc, ) coslrc(c, - c,. + 2 ?'_,.)]

Equation (5.35) applies to any number of planets N.

For the combination instability of degenerate a,_=...=o.+¢+1 and distinct o_, the

combination instabilities (1=1) of a distinct mode and a degenerate mode ahvays vanish

for any N when the planet meshes are in-phase. A more general condition for vanishing

of these combination instabilities is that each of (lz__+I)/N, (lz,._+l)/N _ integer.

As an example, Figure 5.11 shows the instability boundaries for a planetary gear

with three equally spaced planets. The parameters and nominal natural frequencies are

given in Table 5.2 and the vibration modes are shown in Figure 5.12. The mesh phasing

is _,=y,_=0, _,.=1/2 and the contact ratios are cs=l.4, c,.=1.6. We specify el=_=e (that

is, g=l). The natural frequencies change as e varies because the average mesh stiffnesses

depend on the amplitude of the mesh stiffness variation. The analytical solutions (solid

lines) from (5.26), (5.27), (5.28), and (5.29) agree well with the numerical solutions using

Floquet theory and numerical integration. Note the combination instabilities at o9:_+c_,

o_+a_ vanish because they involve the distinct (o__,o_) and degenerate (0)3=0)4) natural

frequencies. Figure 5.13a shows the primary instability regions for different contact

ratios cs, cr; the stiffness variation amplitude e---0.3 and phasing 2_r=0. All instabilities

vanish when the contact ratios are integers. The size of the 2o9_ instability region is

primarily affected by Cr while insensitive to changes in cs. This is because the dominant
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deformation of mode 02_ occurs in the ring-planet meshes (Figure 5.12). The 2@

instability region is mostly affected by c_ because most deformation occurs in the sun-

planet meshes for this mode. The primary instability of the degenerate modes at 2a,,3=2co4

is influenced by both c_ and Cr. The primary instability regions are maximized for

c_=cr=l.5, which is expected from (5.33) and (5.35). The relative phasing _r between the

sun-planet and ring-planet meshes can have a major impact. When the phasing _,.=1/2

and other parameters are the same as in Figure 5.13a, the 2to3=2r_o4 instability vanishes

for any cs=cr (Figure 5.13b). This is because F t_) =0 in (5.35) for ksp=krp, g=l and c_=c,

The above analyses show that contact ratios and mesh phasing significantly affect

the operating condition instability regions. In practice, particular instabilities can be

minimized by proper selection of contact ratios and mesh phasing, which are adjusted by

center distance, diametral pitch, pressure angle, tooth addendum, numbers of teeth, and

other parameters.

(2) Sequentially Phased Planet Meshes

Here we consider equally spaced planet systems where the sun-planet and ring-

planet meshes are sequentially phased with 7_,=(n-1)z_/N and yrn=(n-1)7.r/N. This case

corresponds to zs/N, z_/Nx integer but (zs+zr)/N=integer. A constant phasing hr exists

between the sun-planet and ring-planet meshes for each planet. For the sequential

phasing, the Fourier coefficients in (5.21) satisfy

S-_N a(l) _--,N a(l) N (1) (I) (5.36)
_..,d n=l sn _..an =1 rn

when l:_/N, l:_/N are non-integer.
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For distinct natural frequencies cop, the primary instabilities (1--1) of distinct modes

ahvavs vanish when the planets are sequentially phased. Physically, it means that these

instabilities are not excited because the resultant modal excitations from the sun-planet

and ring-planet meshes each are zero. The secondary instabilities (/=2) of distinct modes

also vanish when 2:s/N, 2zr/N are non-integer. Similarly, combination instabilities (1=1)

of distinct r.Opand r.oq, D_p_,) = E_p_= 0 alw_s vanish in this case.

For instabilities involving the degenerate modes, it is difficult to obtain simple

expressions for the instability boundaries; their instability conditions can be calculated

from (5.28), (5.30), and (5.31). A special case is the combination instability (l=l) of

degenerate to3=... =o-_V+l and distinct o_ when (:,__I)/N, (-r__+l)/N each is non-integer. In

this case, the combination instabilities of distinct and degenerate modes vanish.

Figure 5.14 shows the instability boundaries for the same system as in Figure 5.1 1,

except the three planets are sequentially phased with _,=[0, 1/3, 2/3], y,-,=[0, 2/3, 1/3].

Note the primary, secondary, and combination instability regions vanish for the distinct

natural frequencies 092, (__; only instabilities involving at least one of the degenerate

modes aye=to4 exist.

The foregoing results for equally spaced planets are summarized in Table 5.3.
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Figure 5.11 Instability regions for the system in Table 5.2 and in-phase meshes 7_,= 7,.,,=0,

_.,.=1/2. c_=1. 4, c,.=1.6, e---el=_ (g= l). - analytical solution; *** numerical solution.
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Figure 5.12 Mode shapes of the system in Table 5.2. The carrier motion is not shown.
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Figure 5.13 Instability regions of the system in Table 5.2 for different contact ratios.

e-'-el=e2 =0.3 (g=!). The planets are equally spaced with in-phase meshes (?_.=yr.=0).

(a) _,.=0, (b) _,.=1/2.
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Figure 5.1 4 Instability regions for the three-planet system in Table 5.2 and sequentially

phased planet meshes with 24n=[0, 1/3, 2/3], 2,',-,,=[0,2/3, 1/3]. cs=1.4, Cr=1.6, E'-'-£1=E__

(g=l), _r=1/2.- analytical solution; *** numerical solution.

Planet Mesh

Phasing

In-phase

s "r _ integer
N'N

Sequentially phased

"._2._-.._z._¢ integer
N'N

Single-Mode Instabilities

Distinct Mode

from (5.26)

primary always vanish;
secondary from (5.26)
and vanish if 2zs/N,

2z,/N _ integer

Degenerate
Mode

from (5.28),

(5.30)

from (5.28),

(5.30)

Combination Instabilities

Distinct +

Distinct Mode

from (5.27)

always vanish

Degenerate +
Distinct Mode

always vanish

from (5.31) and

vanish if (zs2l)/N,

(z,,___I)/N_ integer

Table 5.3 Instability boundary solutions when the planets are equally spaced (satisfying

(zs+Zr)/N = integer).
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2. Unequally spaced planets

When the planets are arbitrarily spaced, the structured modal properties do not exist

and the general expressions for instability boundaries cannot be further simplified. For

the practically important case of diametrically opposed planets, however, the vibration

modes retain the well-defined properties (5.24) and (5.25). The following discussion

focuses on this case for N/2 pairs of diametrically opposed planets. For the sun-planet

meshes, each pair of diametrically opposed planets are in-phase (?_(,,+N2j =?_.,,) for even :_

and are counter-phased (_(,,+u2) =_,,+1/2) for odd Zs. Analogous rule applies for the ring-

planet mesh phasing. Note that adjacent planets have arbitrary mesh phasing ?_,,= _,:r

�(2re), y,.,,=¢/,,z,./(2zrc), n= l ..... N/2.

When the sun-planet and ring-planet meshes are both counter-phased (odd zs, zr),

equation (5.36) holds for odd l because ,s,-_t)= -us(,,+_'-(1)/2}and similar relations for

act) h(,_ b_ Recalling modal property (5.24), D_ ) = E ('_ = 0 in (5.32) for distinct cop,nl ' "Sit _ " pq

and odd I. From (5.26) and (5.27), primary and combination (1=1) instabilities of

distinct modes ahvays vanish in the counter-phased case. Physically, these instabilities

are eliminated because the modal excitations from each pair of diametrically opposed

planets always cancel each other. The instability regions involving degenerate modes are

obtained from numerical evaluation of the eigenvalues of(5.30).

When pairs of opposing sun-planet or ring-planet meshes are in-phase (even zs or

even Zr). no simple expressions for instabilities regions are available; numerical solutions

are obtained from (5.26), (5.27), (5.30), and (5.31).
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5.2.4 Dynamic Response and Contact Loss

When planetary gears are operated inside an instability region, damping and

nonlinearities from friction, tooth separation, etc bound the unstable linear model motion.

Figure 5.15a shows the RMS steady-state planet response amplitude versus mesh

frequency for the same system as in Figure 5.11 and the stiffness variation e=0.3.

Rayleigh damping C=(O.07)*M+(O.O7)*K is added to system (5.2) and the force vector

is F:[-2000 1000 0 0 0] 7`N. The solutions are obtained from numerical integration using

mesh stiffnesses in rectangular waveforms (Figure 5.15b). The degenerate modes r_oz=oJ4

only have planet motion, so they are not excited for the torques applied to the carrier and

sun, The combination instability o92_+o_ is sufficiently damped so that it is not apparent

in Figure 5.15a and 16a. The resonance excited by the primary instability 2a_ is

extremely large because tooth separation is not considered; the mesh stiffnesses are pre-

specified functions of time (Figure 5.15b). In practice, tooth separation (clearance

nonlinearity) occurs for large dynamic responses and its effects are dramatic. Figure

5.16a shows the response for the same system as in Figure 5.15a, but tooth separations is

modeled. The mesh stiffness ks,, or k,-, is set to zero if the corresponding tooth

deformation _,<0 or _r,<0 at any step of the integration. The response amplitude of the

2o_ primary instability is significantly reduced from that in Figure 5.15a. Moreover, a

softening jump phenomenon occurs. Sun-planet tooth separation (ksp=O) is apparent in

Figure 5.16b for .(2--2o_. The interactions of mesh stiffness variation and clearance

nonlinearity was studied by Kahraman and Blankenship (1996, 1997) for single-mesh

gears. Their effects on multi-mesh planetary gears need additional investigation.
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Figure 5.15 (a) Steady state RMS of dynamic planet rotation versus mesh frequency

.(2 when tooth separation is not considered. The parameters are as in Figure 5.11 with

e=0. 3. (b) The sun-planet mesh stiffness is pre-specified as shown.
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Figure 5.16 (a) Steady state RMS of dynamic planet rotation versus mesh frequency .(2
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planet tooth separation (ksp=O) occurs for .C2-=-4.5kHz--2o_.
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary and Benefits

This work analytically investigates several key issues in planetary gear dynamics.

The main results and their benefits are summarized for each specific topic.

1. Dynamic Model of Planeta_ Gears

A lumped-parameter model is developed for spur planetary gears. Critical factors to

gear vibration are considered, including arbitrary planet spacing and phasing, gyroscopic

effects that are important in high-speed applications, mesh stiffness variation, and

transmission error excitation. The model is applicable to general epicyclic gears with

various configurations. It is suitable for the dynamic analysis of critical issues in

planetary gear vibration and useful for design guidance (response, natural frequencies,

etc.). This model is a key building block that can be expanded to couple with the housing

and include multiple stages.

2. Modal Properties
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This study characterizesthe natural frequency spectrum and vibration mode

propertiesin planetarygears.Planetarygearspossessrich modalstructurethat is crucial

for eigensensitivity,dynamicresponse,and stability analysis.Rigorouscharacterization

of thesespecialpropertiesis a fundamentaladvancefor planetarygearvibration research.

These properties are capsulized as follows:

• When N planets are equally spaced, the vibration modes can be classified into six

rotational modes with distinct natural frequencies, six pairs of translational modes

with degenerate natural frequencies of multiplicity two, and three groups of planet

modes with degenerate natural frequencies of multiplicity N-3. Each type of vibration

mode has unique properties due to the cyclic symmetry of the system.

• When N/2 pairs of planets are diametrically opposed, the rotational and planet modes

have the same structure as for equally spaced planets; translational modes lose their

degeneracy but retain their distinct properties.

• When the planets are arbitrarily spaced, the rotational and translational modes

generally lose their well-defined structure; the remarkable properties of planet modes

are not affected by planet spacing.

3. Design Parameter Variations

The effects of design parameter variations on planetary gear free vibration are

analytically investigated. The sensitivities of natural frequencies and vibration modes to

key parameters are expressed in simple, closed-form formulae that allow one to quickly

identify the parameters that most impact the modal properties. Well-defined veering rules

are derived to examine the dramatic changes of vibration modes that are possible even for
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smallparametervariations.Theseresultsrely on thestructuredvibrationmodeproperties

characterizedbefore. For design use, the results allow qualitative and quantitative

assessment of the effects of design parameters on planetary gear free vibration:

• Each of the sun-planet and ring-planet mesh stiffnesses affect one rotational mode,

one translational mode, and one planet mode.

• The transverse support stiffnesses and component masses of the carrier, ring, and sun

only affect translational modes.

• The torsional support stiffnesses and moments of inertia of the carrier, ring, and sun

only affect rotational modes.

• The planet bearing stiffness and inertia are critical parameters that affect most modes.

• The operating speed does not affect rotational and planet modes; translational mode

natural frequencies at zero speed split into distinct ones as speed increases.

4. Mesh Stiffness Variation Excitation

The parametric instabilities excited by mesh stiffness variations are investigated for

two-stage and planetary gear trains. The operating conditions leading to parametric

instabilities are analytically determined and numerically verified. The following findings

are obtained from this study.

• The contact ratios and mesh phasing strongly impact the instabilities induced by mesh

stiffness variation. Simple, exact formulae derived from perturbation analyses provide

design guidance to suppress particular instabilities by adjusting the contact ratios and

mesh phasing.
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For two-stagegearsin a countershaftconfiguration,the meshexcitationsinteract

whenonemeshfrequencyis an integermultiple of the otheranddramaticallychange

theinstabilityconditionscomparedto two decoupledexcitations.

For planetarygears,the structuredmodal properties lead to vanishingof certain

instabilities,including the combinationinstability of distinctand degeneratenatural

frequencieswhenplanetmeshesare in-phase,andthe single-modeandcombination

instabilities of distinct natural frequencieswhen planet meshesare sequentially

phased.Along with contactratios,selectionof planetphasingis aneffectivemeansto

avoidparametricinstabilityandits associatedlargeresponse.

6.2 Future Work

To thoroughly understand planetary gear dynamics and develop reliable design

tools for noise and vibration reduction, this research needs to be advanced in several

challenging areas discussed below.

1. Nonlinear Effects

Tooth separation nonlinearity strongly affects the dynamic behaviors of single-mesh

gears, including jump phenomena and multiple steady state solutions (Blankenship and

Kahraman 1995; Kahraman, 1992; Kahraman and Blankenship, 1996, 1997; Kahraman

and Singh, 1991; Parker et al., 2000b; Rook and Singh, 1995; Theodossiades and

Natsiavas, 2000). Typical methodologies such as direct integration, harmonic balance,

perturbation, and shooting method were used in the above analyses. This nonlinearity has

not been fully investigated in planetary gears. The contact loss nonlinearity, coupled with
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meshstiffnessvariation,transmission error excitation, and mesh phasing, is expected to

impact dynamic responses, load sharing among planets, bearing loads, tooth fatigue, and

gear noise. Analytical study of nonlinear effects will provide improved design guidance

for planetary gears based on dynamic response.

2. Transmission Error Modeling

For single-mesh gears, static transmission error (STE) is naturally defined and

widely used as a metric for vibration and noise (Gregory et al., 1963-64; Smith, 1987;

Ozguven and Houser, 1988b). The specification of transmission errors in planetary gears

is complicated due to the carrier rotation and multiple meshes coupled together. Donley

and Steyer (1992) simply used a "net transmission error" that is the average of all

individual transmission errors of the sun-planet and ring-planet meshes. Although this

simplification reduces the computational and modeling effort, it is a significant

simplification difficult to interpret of the dynamic mesh forces. Other studies (Kahraman,

1994b, 1999; Kahraman and Blankenship, 1994) used Fourier series to represent STE in

each mesh, but did not address the physical modeling related to profile error, pitch error,

run-out error, and misalignment. It remains a question how to synthesize transmission

errors from these parameters in planetary gears. More investigations are needed to define,

calculate, and measure a useful analog of STE in planetary gears.

3. Dynamic Response

Dynamic response from analytical models is useful to predict the noise and

vibration early in the design stage. To reliably determine dynamic response, it requires

precise representation of dynamic excitation from tooth meshes. The time-varying mesh
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stiffness and transmission error for single-mesh gears can be calculated from the contact

analysis program LDP (Houser, 1990) or other tools. A major challenge is to match

dynamic response obtained from analytical models using these approximations as input

with benchmark computational and experimental results. No such comparison exists for

planetary gears, and this restricts the application of analytical models in practical design.

In addition, the effects of major design factors (e.g., contact ratio, mesh phasing, mesh

stiffness variation, support/bearing stiffness, tooth modification) on dynamic response

need be characterized for design guidance. This investigation will start with two-stage

spur gears and then extend to more complicated planetary gears.

4. Ring Gear Flexibility

The ring body is considered rigid in this dissertation. In practice, internal gears with

thin rims may distort elastically. Experimental measurements (Ma and Botman, 1984)

and finite element computations (Kahraman and Vijayakar, 2000) have shown dramatic

changes in load sharing among planets from the ring flexibility. Because the ring is

usually connected to the housing, its flexibility directly influences the transmission of

structure-borne noise. The elastic distortion of the ring can also affect the mesh

stiffnesses and lead to contact loss. Qualitative and quantitative analyses of the effects of

ring flexibility is necessary to improve understanding of physical behaviors. The

fundamental task is to extend the current discrete model by including the continuous

deformation of the ring body. The analytical and computational methods discussed in

this work can likely be used on this extended model.

5. Experimental Verification
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5. Experimental Verification

The inherent complexity of gear dynamics requires experimental validation of

analytical and numerical results. For single-mesh gear models, there are extensive

experiments verifying analytical findings as well as presenting questions for research and

design. The analytical models of planetary gears, however, have not been properly

validated because of the lack of benchmark experimentation. The calculated vibrations

from the finite element tool Calyx agree well with measured results at NASA Glenn

Research Center (Krantz, 1992) and General Motors (Blankenship and Kahraman, 1996;

Kahraman and Blankenship, 1997, 1999a, b; Parker et al., 2000b). More experimental

studies are needed to develop reliable dynamic models suitable for practical design and

investigate critical issues in planetary gear vibration.
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APPENDIX A: SYSTEM MATRICES

M = diag(M<,M,.,Ms,Ml,'",M_, )

M h = diag(mh.ml,,Ih Irl_ ), h = c,r,s,l,...,N

mi]G =|2m h 0

Lo o

K a = diag(m_, m,,,O, m,., mr,O, m s, m,,O, mp, me,O,..., rap, mp,O)

K b = diag(Kch, K, b, K_ h,0,. •. ,0)

Khb =diag(kt,_,k_ ,k_,,) , h=c,r,s

Kill

cl

symmetric

o Kh K_... K_

o K,!2KL_... K_

K_, KL_ K;2 ... K
1

K pp 0 ... 0

N
Kpp

1 0 -sin_n ]K _"l= / 1 cos ty,

[_symmetric 1

K'_3 = diag( km.kp.. O)

[ cos sin !lK_z = sing. -cosqG

0 -1
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sin2 _r,, -COS_., sin_'.,

K _l = ks,, (t)[ c°s2 _r,,

[_symmetric

- sin _/r,,sin ar

K i_2= kr. (t)[ cos _sina r
[_ sintZr

- sin _r. cos a r sin g/r.

- COS IptrnCOS O'r - COS I/frn

- cosa r 1

I ° "_ °
sm- a r -coso_ r smcr r -sinar

K,_!3 = krn (t)] cos2o_ r cosO" r

Lsymmetric 1

sin _. -cosg/s. sin_sn -sin_zsn

K_'1 = ks. (t)] cos2 V,,, cos g/s,,

[_symmetric 1

Isin _s, sinas sin_/,, cosoc_

K s"2= ks, (t)[- cos Wsnsin_s - cos _s, COSC_s
L - sina_ - cosa s

sin e cr_ cosa s sino<s - sincr_ )
K_3 = ks,(t) I cos2_'_ - coscr_.

L_syrmnetric 1

T(t) = [0,0, T ,0,0, T_,O,O,T_,O,... O]r

r'(t) = [o,E, E, F,... F',,

E = k,_er_[Sing/,,,,-cosg/,,,,1] r ,

F. = k.. e.. [sin IF. .,- cos g/e. ,1]T

F. = k =er. [Sin tz r ,- sin Crr,-1] T + k .. e.. [ sin ct .- sin tz r ,1] r

Note that the mesh stiffness variation is modeled by the time-varying stiffnesses

k.,,(t) and k.,(t).
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APPENDIX B: EXAMPLE SYSTEM

The planetary gear used in the U.S. Army's Helicopter OH-58

example in the work. Two cases of the system are used in the study.

is the benchmark

Case h The ring gear is free and the system has 3(N+3) degree of freedom, where N is

the number of planets. The model parameters are given in Table C. 1.

Case lI: The ring gear is fixed (kr = kru= O) and other parameters are the same as Table

C. 1. The system has four planets and 18 degrees of freedom.

Sun Ring Carrier Planet

Mass (kg) 0.4 2.35 5.43 0.66

I/r 2 (kg) 0.39 3.00 6.29 0.61

Base diameter (nun) 77.42 275.03 177.8 100.35

Teeth number 27 99 35

Mesh stiffness (N/in) k_p= k,v= k,,,= 5xlO _

Bearing stit_ess (N/m) kp = ks = kr =kc = l0 s

Torsional stiffness (N/m) k,_,= 109 ks,, = kc,, = 0

Pressure angle (o) o_ = o_. --- tr = 24. 6

Table B. 1 Model parameters of the planetary gear in the U.S. Army's helicopter 0H-58
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